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Abstract In this paper we consider time-dependent PDEs discretized by a
special class of Physics Informed Neural Networks whose design is based on
the framework of Runge–Kutta and related time-Galerkin discretizations. The
primary motivation for using such methods is that alternative time-discrete
schemes not only enable higher-order approximations but also have a crucial
impact on the qualitative behavior of the discrete solutions. The design of the
methods follows a novel training approach based on two key principles: (a)
the discrete loss is designed using a time-discrete framework, and (b) the final
loss formulation incorporates Runge–Kutta or time-Galerkin discretization in a
carefully structured manner. We then demonstrate that the resulting methods
inherit the stability properties of the Runge–Kutta or time-Galerkin schemes,
and furthermore, their computational behavior aligns with that of the original
time discrete method used in their formulation. In our analysis, we focus on
linear parabolic equations, demonstrating both the stability of the methods
and the convergence of the discrete minimizers to solutions of the underlying
evolution PDE. An important novel aspect of our work is the derivation of
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maximal regularity (MR) estimates for B-stable Runge–Kutta schemes and
both continuous and discontinuous Galerkin time discretizations. This allows
us to provide new energy-based proofs for maximal regularity estimates pre-
viously established by Kovács, Li, and Lubich [30], now in the Hilbert space
setting and with the flexibility of variable time steps.

Keywords Physics informed neural networks · Runge–Kutta methods ·
collocation methods · Galerkin time-stepping methods · maximal parabolic
regularity

Mathematics Subject Classification (2000) 65M15 · 68T01 · 68T07

1 Introduction

1.1 Evolutionary PDEs and Neural Network Discretizations

In this paper, we consider time-dependent PDEs discretized by a special class
of Physics Informed Neural Networks whose design is based on the framework
of Runge–Kutta and related time-Galerkin discretizations. The key motivation
for adopting such methods lies in their ability not only to achieve higher-order
approximations but also to significantly influence the qualitative behavior of
the discrete solutions. These physically consistent approximations are critical
for numerous applications, as underscored by the rich and significant literature
on time-discrete methods in numerical analysis and scientific computation; see,
e.g., [11], [15], [16], [12], [10], [26], [27], [49]. Characteristic examples include
conservative schemes for wave and Schrödinger equations, dissipative schemes
for diffusion equations preserving the smoothing effect of the equation, geome-
try and structure preserving schemes, and specially tuned time discretizations
for the Navier–Stokes equations.

Formulation of the RK-PINN methods

Physics Informed Neural Networks are algorithms where the discretization is
based on the minimization of the L2 norm of the residual of the evolution PDE
over a set of neural networks with a given architecture. Computing the loss
requires an additional quadrature step to evaluate the space-time integrals,
a process known as training. Standard approaches, particularly in high di-
mensions, often rely on probabilistic quadrature methods like Monte Carlo or
Quasi-Monte Carlo. However, the impact of these discrete losses on the qual-
itative behavior of the approximations remains largely unexplored. Notably,
even for the scalar wave equation, we lack clarity on whether and under what
conditions these methods preserve key conservation properties.

In this work, we propose a novel training approach based on two key prin-
ciples:

(a) the discrete loss is designed using a time-discrete framework, and
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(b) the final loss formulation incorporates Runge–Kutta or time-Galerkin dis-
cretization in a carefully structured manner.

We then demonstrate that the resulting methods inherit the stability prop-
erties of the Runge–Kutta or time-Galerkin schemes, and furthermore, their
computational behavior aligns with that of the original time discrete method
used in their formulation. Since time-discrete training affects only the time
variable, the resulting schemes are particularly well-suited for high-dimensional
evolution problems.

Analysis through novel Maximal Regularity estimates

In our analysis, we focus on linear parabolic equations, demonstrating both
the stability of the methods and the convergence of the discrete minimizers
to solutions of the underlying evolution PDE. Following the approach in [21],
we employ the liminf-limsup framework of De Giorgi (see Section 2.3.4 of [17]
and [9]), which is widely used in the Γ -convergence of functionals for nonlinear
PDEs.

We first establish that the proposed methods yield stable functionals in
the sense of properties [S1] and [S2], as defined in Section 3.1.1. Our analysis
reveals that stability is rooted in strong discrete regularity estimates associated
with maximal regularity. A key novel contribution of our work is the derivation
of maximal regularity (MR) estimates for B-stable Runge–Kutta schemes, as
well as for both continuous and discontinuous Galerkin time discretizations.
This allows us to provide new energy-based proofs for maximal regularity
estimates previously established by [30], now in the Hilbert space setting and
with the flexibility of variable time steps. This generalizes the results of [30],
where constant time steps were a key assumption. See also [33], [2], [28]. An
additional interesting feature of our approach is the derivation of the first
maximal regularity estimates for high-order Lobatto IIIA methods.

Plan of the paper

In Section 2 we systematically formulate the methods considered in this work.
To motivate our approach, we use as a model a linear parabolic equation, but
the algorithms are clearly applicable to a wide selection of evolution equations.
First, we consider simple time discrete training methods and then we employ
the pointwise formulation of [3] to design the various Runge–Kutta Physics
Informed Neural Networks (RK-PINNs).

Section 3 is devoted to the analysis of the methods in the case of linear
parabolic equations by establishing that the neural network approximations
satisfy crucial properties related to the liminf-limsup framework mentioned
above, [17]. To prove stability, Proposition 3.1, we rely on maximal regular-
ity estimates. Our novel maximal regularity estimates for Runge–Kutta and
both continuous and discontinuous Galerkin time discretizations are assumed
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in Section 3 and are systematically derived in Section 4. Theorem 3.1 demon-
strates that the sequence of neural network minimizers converges to the exact
solution of the parabolic equation, i.e.,

û` → u, in L2((0, T );H1(Ω));

see Theorem 3.1 for the precise statement. Throughout, we assume that the
approximability capacity of the discrete neural network spaces is given; specif-
ically, we assume that these spaces can approximate smooth functions as de-
scribed in (3.4), (3.5), and Remark 3.1.

Section 4 is dedicated to deriving maximal regularity estimates within an
abstract framework for evolution equations of parabolic type in a Hilbert space.
The results presented in this section are of independent interest, both for their
proof techniques and because they hold for variable time steps, unlike the
results in [30].

We present all time-discrete methods in a unified point-wise formulation as
given in (4.3). In Section 4.3, we focus on Galerkin time-stepping methods, in-
cluding continuous and discontinuous Galerkin methods. Section 4.4 addresses
collocation Runge–Kutta methods, with detailed proofs provided for Gauss
and Radau IIA methods, as well as for all algebraically stable Runge–Kutta
methods. Notably, we derive a novel connection of Lobatto IIIA to continuous
Galerkin methods and thus we are able to establish its maximal regularity
bounds.

It is worth highlighting that Lobatto IIIA methods are high-order exten-
sions of the trapezoidal rule. Despite being A-stable, their coefficient matrix
is not invertible, and they lack B-stability. As a result, our maximal regularity
estimates appear to be the first in the literature for this significant family of
Runge–Kutta methods.

Section 5 is dedicated to numerical experiments. In addition to parabolic
equations, we also consider the wave equation. While the convergence the-
ory for hyperbolic equations remains to be developed, the formulation of the
methods can be directly applied by expressing the equation as a first-order
evolution system in time.

The numerical results indicate that our proposed methods exhibit the de-
sired properties. They achieve higher accuracy and, more importantly, allow
for the adaptation of their qualitative characteristics to produce physically
relevant approximations. We did not include computations based on explicit
Runge–Kutta discretizations. Instead, we refer to [21], where neural network
methods utilizing the explicit Euler scheme fail to meet the stability criteria
[S1] and [S2], resulting in unstable behavior. To regain stability, these methods
require the enforcement of standard CFL conditions that link the space and
time discretization parameters.

For training in the spatial variable, we employed quasi-Monte Carlo sam-
pling. This was done both for comparison with full (space and time) quasi-
Monte Carlo sampling and to underscore that our approach is well-suited for
high-dimensional evolution PDEs. Notably, the time discretization introduces
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a mesh only in the time variable, making the method particularly effective in
high dimensions.

Remarks on bibliography

Physics Informed Neural Networks is a class of neural network based methods
to approximate solutions of PDEs, [43]. The loss is based on the residual of the
PDE; similar methods were considered in [32], [6], [42], [47], [38]. Different loss
functionals leading to various neural network methods for differential equations
are considered in [44], [20], [29], [51], [14], [7] [22], [24]. Previous works on the
analysis of these methods include [47], [5], [45], [46], [39,40], [38], [37].

Neural network approximations for evolution equations have been previ-
ously studied in [47], [43], [5], [8], [22], and [24]. In the works [47], [43], [5], a
global space-time residual-type loss was employed, whereas in [22] and [24], a
time-stepping approach based on the backward Euler or Minimizing Movement
schemes was adopted. Discrete time models related to Runge–Kutta methods
were considered in [43].

As mentioned, our stability and convergence analysis follows the framework
introduced in [21], which is motivated by Γ -convergence arguments. In [41], Γ -
convergence was employed to analyze deep Ritz methods without considering
training. More recently, the lim inf − lim sup framework was utilized in [34]
to establish convergence results for global and local discrete minimizers in
general machine learning algorithms with probabilistic training. Additionally,
this framework was applied in [23] to analyze deep Ritz methods trained with
finite element techniques.

2 Motivation and problem formulation

2.1 Model problems and their Machine Learning approximations

We will consider linear evolution PDEs. The formulation of the methods can
be applied to parabolic or wave type time dependent equations, linear or non-
linear, and our main focus is on the effect of the time discretization mechanism.

2.2 A linear evolution PDE

To motivate our approach we consider as a model problem a linear parabolic
equation. We use the compact notation ΩT = Ω × (0, T ], for some fixed time
T > 0. We consider the initial and boundary value problem

(2.1)


ut + Lu = f in ΩT ,

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω,
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where f ∈ L2(ΩT ), u0 ∈ H1
0 (Ω), and L is a coercive, self-adjoint, second order

elliptic operator. The associated energies used will be the L2-residuals

(2.2) E(v) =

∫ T

0

∫
Ω

|vt + Lv − f |2dx dt+ |v(0)− u0|2H1

defined over smooth enough functions and domains Ω. The choice of the H1

seminorm for the initial condition, |v(0) − u0|H1 , is done in order to obtain
a balanced energy which is particularly convenient in the analysis; obviously,
other choices are possible.

Nonlinear Spaces generated by Neural Networks

Physics Informed Neural Networks are based on the minimization of the func-
tional E over a chosen discrete set consisting of neural networks, aiming at
approximating u. To fix ideas, we consider functions uθ defined through neural
networks. The construction below is typical, and it is presented for complete-
ness. Our results only depend on the approximation capacity of these functions.
A deep neural network maps every point x ∈ Ω× [0, T ] to uθ(x) ∈ R, through

(2.3) uθ(x) = CL ◦ σ ◦ CL−1 · · · ◦ σ ◦ C1(x) ∀x ∈ ΩT .

Any such map CL is defined by the intermediate (hidden) layers Ck, which are
affine maps of the form

(2.4) Cky = Wky + bk, where Wk ∈ Rdk+1,dk , bk ∈ Rdk+1 ,

where the dimensions dk may vary with each layer k and σ(y) denotes the
vector with the same number of components as y, where σ(y)i = σ(yi) . The
index θ represents collectively all the parameters of the network CL, namely
Wk, bk, k = 1, . . . , L. The set of all networks CL with a given structure (fixed
L, dk, k = 1, . . . , L ) of the form (2.3), (2.4) is called N . The total dimension

(total number of degrees of freedom) of N , is dimN =
∑L
k=1 dk+1(dk + 1).

We now define the nonlinear discrete set of functions

(2.5) VN = {uθ : ΩT → R, where uθ(x) = CL(x), for some CL ∈ N }.

Boundary conditions is a subtle issue. To avoid extra technical problems, it will
be useful to introduce, following [48], the set of functions which exactly satisfy
the boundary conditions through appropriate distance functions depending
only on the domain Ω. If Φ is such a function, see [48, Section 5.1.1], we define

(2.6)
VN ,0 = {uθ : ΩT → R, where uθ(x, t) = Φ(x)CL(x, t) for some CL ∈ N}.

Then, VN ,0 ⊂ H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩ H1
0 (Ω)), for smooth

enough activation function σ. It should be noted that the above choice is
meaningful only when approximating sufficiently smooth solutions; see [21] for
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a detailed analysis of cases where elliptic regularity estimates fail. An alterna-
tive and robust approach is to enforce the boundary conditions via Lagrange
multipliers, combined with corresponding Uzawa algorithms, [37].

Abstract Loss – minimization on VN

Physics Informed Neural networks are based on the minimization of residual-
type functionals of the form (2.2) over discrete neural network sets of given
architecture. To this end, we assume that the (non-computable) abstract prob-
lem

(2.7) min
v∈VN ,0

E(v)

possesses a solution v? ∈ VN ,0. The integrals appearing in the loss functional
E require further discretization to result in a computable loss. As the set
VN ,0 is nonlinear, the problem needs to be considered as minimization in the
parameter space over RdimN

(2.8) min
θ∈Θ
E(uθ),

which turns out to be non-convex with respect to θ even though the functional
E(v) is convex with respect to v.

2.3 Simple time-discrete Training

To formulate fully discrete schemes, we shall need computable discrete versions
of the energy E(uθ). This can be achieved through deterministic or probabilistic
training.

Deterministic and probabilistic training

We consider appropriate quadrature for integrals over ΩT (Training through
quadrature). Such a quadrature requires a set Kh of discrete points z ∈ Kh

and corresponding nonnegative weights wz such that

(2.9)
∑
z∈Kh

wzg(z) ≈
∫
ΩT

g(x) dx.

Then, one can define the discrete functional

(2.10) EQ,h(g) =
∑
z∈Kh

wz|vt(z) + Lv(z)− f(z)|2.

The initial condition is discretized in a similar way.
An alternative is to approximate integrals using probabilistic (Monte Carlo,

Quasi-Monte Carlo) quadrature rules. To this end, we may consider a collection
X1, X2, . . . of i.i.d. ΩT -valued random variables, defined on an appropriate
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probability space corresponding to sample points in ΩT . Let ω be a fixed
instance, and Xi(ω) ∈ ΩT be the corresponding values of the random variables.
Monte Carlo approximation of the space-time integral yields the discrete sum

(2.11) EN,ω(v) =
1

N

N∑
i=1

|vt(Xi(ω)) + Lv(Xi(ω))− f(Xi(ω))|2.

The discrete minimization problem for each instance is

(2.12) min
v∈VN ,0

EN,ω(v) + E0N,ω(v),

where E0N,ω(v) is a Monte Carlo approximation of the initial condition. One
of the main advantages of these discretizations is that they scale reasonably
with the dimension, and are thus preferable for high-dimensional operators L.

Time discrete training

To introduce the Runge–Kutta PINN algorithms, it will be instrumental to
consider a hybrid approach where quadrature (and discretization) is applied
only to the time variable of the time dependent problem. Then, the fully
discrete scheme can be designed using alternative discretizations in space,
deterministic or probabilistic.

To fix notation, let 0 = t0 < t1 < · · · < tN = T define a partition of [0, T ]
and Jn := (tn, tn+1], kn := tn+1− tn. We denote by vm(·) and fm(·) the values
v(·, tm) and f(·, tm). Then, we consider the discrete in time quadrature

(2.13)

N−1∑
n=0

kn g(tn+1) ≈
∫ T

0

g(t) dt.

We proceed to define the time-discrete version of the functional (2.2) as follows

Gk,IE(v) =

N−1∑
n=0

kn

∫
Ω

∣∣∣vn+1 − vn
kn

+ Lvn+1 − f(tn+1)
∣∣∣2 dx

+ |v0 − u0|2H1(Ω).

(2.14)

In [21], it was shown that the problem

(2.15) min
v∈VN

Gk,IE(v)

yields stable and convergent approximations to the exact solution as opposed
to the analogue (from the point of view of quadrature and approximation)
discrete functional:

(2.16) Gk,EE(v) =

N−1∑
n=0

kn

∫
Ω

∣∣∣vn+1 − vn
kn

+Lvn− f(tn)
∣∣∣2 dx+ |v0−u0|2H1(Ω).
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Thereby hinting that there is a deeper connection between standard stability
notions of time discretizations and this class of neural network algorithms. In
the analysis, it was instrumental to consider an alternative representation of
the time discrete functional through reconstructions. This can motivate the
design of the Runge–Kutta PINN methods of the next section. Indeed, let the
linear time reconstruction v̂ of a time dependent function v be the piecewise
linear approximation of v defined by linearly interpolating between the nodal
values vn and vn+1:

(2.17) v̂(t) := `n0 (t)vn + `n1 (t)vn+1, t ∈ Jn,

with `n0 (t) := (tn+1 − t)/kn and `n1 (t) := (t− tn)/kn. If the piecewise constant
interpolant of vj is denoted by v,

(2.18) v(t) := vn+1, t ∈ Jn ,

the time discrete energy Gk,IE becomes

Gk,IE(v) = ‖v̂t + Lv − f‖2L2((0,T );L2(Ω)) + |v̂(0)− u0|2H1(Ω)

=

∫ T

0

‖v̂t + Lv − f‖2L2(Ω) dt+ |v̂(0)− u0|2H1(Ω).
(2.19)

This representation of the loss will be generalized to high-order time discretiza-
tions in the next section.

2.4 Runge–Kutta Physics Informed Neural Networks

To introduce the Runge–Kutta PINNs, we first recall the connection of Runge–
Kutta methods and collocation time discretizations.

2.4.1 Collocation Runge–Kutta methods

For q ∈ N, let 0 6 c1 < · · · < cq 6 1 denote the intermediate nodes of
a Runge–Kutta method or collocation nodes. With starting value U0 = u0,
we consider the discretization of problem (2.1) by a q-stage Runge–Kutta
method: we recursively define approximations U` ∈ V to the nodal values
u(t`), as well as internal approximations U`i ∈ V to the intermediate values
u(t`i), t`i = t` + cik`, by

(2.20)


Uni = Un − kn

q∑
j=1

aij
(
LUnj − f(tnj)

)
, i = 1, . . . , q,

Un+1 = Un − kn
q∑
i=1

bi
(
LUni − f(tni)

)
,
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n = 0, . . . , N − 1. Here, without being very precise, V is a functional space
where our approximations are sought for every t ∈ [0, T ]; typically V is in-
cluded in the domain of the operator L. The most important class of Runge–
Kutta methods are the collocation Runge–Kutta methods, [25], [50], [26]. Such

methods are equivalent to considering a collocation approximation Û which is a
continuous piecewise polynomial function of local degree q satisfying Û(0) = u0
and the collocation conditions

(2.21) Û ′(tni) + LÛ(tni) = f(tni), i = 1, . . . , q, n = 0, . . . , N − 1.

The q-stage Runge–Kutta method and the collocation points are related through
the relations

(2.22) aij =

∫ ci

0

`j(τ) dτ, bi =

∫ 1

0

`i(τ) dτ, i, j = 1, . . . , q;

here, `1, . . . , `q ∈ Pq−1 are the Lagrange polynomials for the collocation nodes
c1, . . . , cq, `i(cj) = δij , i, j = 1, . . . , q. In this case, the stage order of the
Runge–Kutta method is q.

It is well known, [25], [50], [26], that the collocation and Runge–Kutta
methods (2.21) and (2.20), respectively, are equivalent in the sense that they
yield the same approximations at the nodes and at the intermediate nodes,
i.e.,

(2.23)
Û(tn) = Un, n = 1, . . . , N,

Û(tni) = Uni, i = 1, . . . , q, n = 0, . . . , N − 1.

These methods admit a crucial pointwise formulation which is the key element
of the loss functional defined below. Indeed, as in [3] and [4], if we let Iq−1
be the piecewise interpolation operator by polynomials of degree q − 1 at
the collocation nodes tni, i = 1, . . . , q, n = 0, . . . , N − 1, and because Û ′ is a
piecewise polynomial of degree q − 1 as well, we can write (2.21) in pointwise
form as

(2.24) Û ′(t) + LIq−1Û(t) = Iq−1f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

The interpolants U := Iq−1Û and Iq−1f are piecewise polynomials of degree
q − 1 and, in general, discontinuous at the nodes t0, . . . , tN−1. The pointwise
form (2.24) of the numerical method will be the basis for defining the Runge–
Kutta discrete loss.

2.4.2 Runge–Kutta discrete Loss

We shall introduce more notation related to the representation of piecewise
polynomial functions: Let `n1, . . . , `nq ∈ Pq−1 be the Lagrange polynomials
`1, . . . , `q ∈ Pq−1 for the collocation nodes c1, . . . , cq shifted to the interval
[tn, tn+1], `ni(t) = `ni(tn + knτ) = `i(τ), i = 1, . . . , q. Obviously,

`ni(tnj) = δij , i, j = 1, . . . , q.
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Furthermore, we let 0 = c̃0 < · · · < c̃q = 1 be auxiliary points, such that

c̃0 = 0 and c̃q = 1, and let ˜̀
n0, ˜̀

n1, . . . , ˜̀
nq ∈ Pq be the Lagrange polynomials

˜̀
0, ˜̀

1 . . . , ˜̀
q ∈ Pq

for the points c̃0, . . . , c̃q shifted to the interval [tn, tn+1], ˜̀
ni(t) = ˜̀

ni(tn +

knτ) = ˜̀
i(τ), i = 0, . . . , q. Obviously, ˜̀

ni(t̃nj) = δij , i, j = 0, 1, . . . , q, with
t̃nj := tn + knc̃j , j = 0, . . . , q. With this notation, let the interpolant v̂ of a
time dependent function v be the piecewise polynomial function approximating
v defined by interpolating the nodal values v(t̃nj) of v as follows

(2.25) v̂(t) = Îqv(t) =

q∑
i=0

˜̀
ni(t)v(t̃ni), v(t) = Iq−1v̂(t) =

q∑
j=1

`nj(t)v̂(tnj),

for t ∈ (tn, tn+1].
Notice that in principle t̃nj could be different from tnj , and we can choose

them at our convenience. The reason of introducing t̃nj is that we would like
to interpolate neural network functions v on the space of continuous piecewise
polynomial functions and apply afterwards the collocation residual to v̂. In
some important cases t̃nj can be chosen as extensions of the collocation points
tnj by including an additional node; see Remark 3.2.

We are ready to define the Runge–Kutta discrete loss by

GRK(v) = ‖v̂t(t) + LIq−1v̂(t)− Iq−1f(t)‖2L2((0,T );L2(Ω)) + |v̂(0)− u0|2H1(Ω)

=

∫ T

0

‖v̂t(t) + LIq−1v̂(t)− Iq−1f(t)‖2L2(Ω) dt+ |v̂(0)− u0|2H1(Ω).

(2.26)

The Runge–Kutta Physics Informed Neural Network method is based on the
discrete minimization problem for the loss GRK(v),

(2.27) min
v∈VN ,0

GRK(v).

The formulation of the method for nonlinear evolution problems is straight-
forward by using similar interpolation operators; see [3].

2.4.3 A general discrete Loss

The Runge–Kutta time discretizations as well as continuous and discontinuous
time-Galerkin schemes can be cast into a unified formulation showing that the
proposed time discrete training can be quite general. This formulation shall be
used in the analysis of Sections 3 and 4. We consider generalized interpolation
operators as follows: For q ∈ N, we consider projection or interpolation oper-
ators Πq−1, Π̃q−1 to the piecewise polynomial functions of local degree q − 1.
Furthermore, we consider a projection or interpolation operator

v̂ = Π̂qv
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of a time dependent function v to be the piecewise polynomial function of local
degree q approximating v. We assume that if v is continuous in time, then v̂
is a piecewise polynomial globally continuous in time function. The standard
interpolation operators as defined in Section 2.4.2 are typical cases of these
operators. We are ready to define the time-discrete loss by

(2.28) Gk(v) =

∫ T

0

‖v̂t(t)+LΠq−1v̂(t)−Π̃q−1f(t)‖2L2(Ω) dt+|v̂(0)−u0|2H1(Ω).

In Section 4 we show systematically that all Runge–Kutta methods considered
and both continuous and discontinuous Galerkin time discrete schemes are as-
sociated to the general formulation involving the discrete operatorsΠq−1, Π̃q−1

and Π̂q.
The generalized Runge–Kutta Physics Informed Neural Network method

is based on the discrete minimization problem for the loss Gk(v),

(2.29) min
v∈VN ,0

Gk(v).

Under certain assumptions on the generalized operators (see Proposition 3.1,
(3.12), and (3.20)), we conduct the stability and convergence analysis for (2.29)
in Section 3. These assumptions are shown to be satisfied by all the methods
discussed in this work, as demonstrated in Section 4.

3 Stability and Convergence for Parabolic equations

Let as before Ω ⊂ Rd be open and bounded, and set ΩT = Ω× (0, T ] for some
fixed time T > 0. We consider the parabolic problem

(3.1)


ut + Lu = f in ΩT ,

u = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω.

In this section we discuss convergence properties of approximations of (3.1)
obtained by minimization of continuous and time-discrete energy functionals
over appropriate sets of neural network functions. We shall assume that Ω is
a convex Lipschitz domain. This assumption is made to ensure that elliptic
regularity estimates are valid. The case of a non-convex domain can be treated
with the appropriate modifications in the analysis.

The continuous functional can be defined as follows: Consider

G : H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩H1
0 (Ω))→ R

such that

(3.2) G(v) =

∫ T

0

‖vt(t) + Lv(t)− f(t)‖2L2(Ω)dt+ |v(0)− u0|2H1(Ω).

The use of theH1(Ω) seminorm for the initial condition is more appropriate for
stability purposes for parabolic equations. While weaker choices are certainly
possible, they would require a modified technical analysis.
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3.1 Time discrete training through Runge–Kutta and time Galerkin

We shall work with the general time-discrete loss defined in Section 2.4.3:

Gk(v) =

∫ T

0

‖v̂t(t) + LΠq−1v̂(t)− Π̃q−1f(t)‖2L2(Ω) dt+ |v̂(0)− u0|2H1(Ω).

In the sequel, we shall use the compact notation

(3.3) Û = Π̂qU, U := Πq−1Û , and f̃ = Π̃q−1f.

The neural network spaces are selected to meet specific approximability
criteria aligned with established results in approximation theory; see, e.g., [1,
18,51] and their references. However, subtle challenges arise, particularly with
boundary conditions and the fact that existing approximation results do not
yet offer concrete guidance on selecting specific architectures. Nevertheless,
to investigate the potential convergence of minimizers, we assume that the
following approximability requirements are satisfied. The required smoothness
of the spaces is guaranteed by selecting smooth enough activation functions.
The neural network spaces are selected such that for each ` ∈ N we associate
a space VN ,0, which is denoted by V` with the approximation property: For
each w ∈ H1((0, T );L2(Ω))∩L2((0, T );H2(Ω)∩H1

0 (Ω)) there exists a w` ∈ V`
such that

‖w` − w‖H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)) 6 β`(w),

and β` (w)→ 0, `→∞.
(3.4)

If, in addition, w has higher regularity, we assume that

‖(w` − w)′‖H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)) 6 β̃` ‖w′‖Hm((0,T );H2(Ω)),

and β̃` → 0, `→∞,
(3.5)

where in the above relation and throughout this section, the time derivative
is denoted by w′, i.e., w′ := wt.

Remark 3.1 The current state of the art in approximating smooth functions
using neural network spaces lacks sufficient information regarding the specific
architectures necessary to achieve particular bounds and rates. The above
assumptions can be relaxed by requiring that (3.4) and (3.5) hold only for
w = u, where u represents the exact solution of the problem.

With the spaces V` defined above, we shall use the following notation for
the discrete energies:

(3.6) G`(v`) =

{
Gk(`)(v`), v` ∈ V`,
+∞, otherwise.

Here k = k(`) are selected just to satisfy k = k(`) → 0 as ` → ∞, and
Gk(`)(v`) = Gk(v`) is defined by (3.1).
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3.1.1 Stability-Maximal Regularity

Following [21], we call our methods stable if two key properties, roughly stated
as follows, hold:

[S1] If the energies E` are uniformly bounded

E`[u`] 6 C,

then there exists a constant C1 > 0 and `-dependent norms V` such that

(3.7) ‖u`‖V`
6 C1.

[S2] Uniformly bounded sequences in ‖ · ‖V`
have convergent subsequences in

H.

Here,H is a normed space (typically a Sobolev space) that depends on the form
of the discrete energy being considered. Property [S1] requires that E`[v`] is
coercive with respect to (potentially `-dependent) norms or semi-norms. More-
over, [S2] implies that, although the norms ‖·‖V`

are `-dependent, they should
allow the extraction of convergent subsequences from uniformly bounded se-
quences in these norms, in a weaker topology induced by the space H.

This definition is inspired by a discrete interpretation of the Equi-Coercivity
property in the Γ -convergence framework in the calculus of variations. As we
will demonstrate, this property is fundamental to establishing compactness
and the convergence of minimizers for the approximate functionals, as shown
later in this section.

The stability of Gk follows by the next result which hinges on the maximal
regularity estimates established in Section 4.

Proposition 3.1 Assume that the following maximal regularity estimate is
satisfied

‖U‖L2((0,T );H2(Ω)) + ‖Û ′‖L2((0,T );L2(Ω))

6 C
[
‖Û(0)‖H1(Ω) + ‖Ût + LU‖L2((0,T );L2(Ω))

]
;

(3.8)

then, the functional Gk defined in (3.1) is stable with respect to Û , U in the
following sense:

(3.9)
If Gk(U) 6 C for some C > 0, we have

‖U‖L2((0,T );H2(Ω)) + ‖Û ′‖L2((0,T );L2(Ω)) 6 CMR.

Proof Since

(3.10)

∫ T

0

‖Ût + LU − Π̃q−1f(t)‖2L2(Ω) dt 6 C,
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we have

(3.11) ‖Ût + LU‖L2((0,T );L2(Ω)) 6 C1.

Therefore, in view of (3.8) and the fact that

‖Û(0)‖H1(Ω) 6 C

as a result of Gk(U) 6 C, we conclude the proof.

3.2 Convergence of the minimizers

Next, we shall prove that the sequence of discrete minimizers (u`) converges in
L2((0, T );H1(Ω)) to the minimizer of the continuous problem. We first show
a lim inf and a lim sup inequality.

Lemma 3.1 (lim inf inequality) Assume that a sequence {U`}, U` ∈ V`,
satisfies

G`(U`) 6 C

uniformly in `. Let the operators Πq−1, Π̂q satisfy

(3.12)

∫
Jn

Π̂qv dt =

∫
Jn

Πq−1Π̂qv dt ,

for all v ∈ V`. Assume further that there exists a ũ ∈ H1((0, T );L2(Ω)) ∩
L2((0, T );H2(Ω)) such that

U` → ũ, `→∞, in L2((0, T );H1(Ω)) ;

then,

(3.13) G(ũ) 6 lim inf
`→∞

G`(U`).

Proof From the stability estimate, Proposition 3.1, and the assumption on the
boundedness of G`(U`) we conclude that ‖U `‖L2((0,T );H2(Ω))+‖Û ′`‖L2((0,T );L2(Ω))

6 C1 are uniformly bounded. By the relative compactness in L2((0, T );L2(Ω))
we have (up to a subsequence not re-labeled) the existence of u(1) and u(2)
such that

(3.14) LU ` ⇀ Lu(1) and Û ′` ⇀ u′(2) weakly in L2((0, T );L2(Ω)) .

Fix a space-time test function ϕ ∈ C∞0 , and let I0 be an appropriate interpolant
into the piecewise constants in time functions. Then, (3.12) implies∣∣∣ ∫ T

0

(Û`, ϕ
′) dt−

∫ T

0

(U `, ϕ
′) dt

∣∣∣
6
∣∣∣ ∫ T

0

(Û` − U `, ϕ′ − I0ϕ′) dt
∣∣∣+
∣∣∣ ∫ T

0

(Û` − U `, I0ϕ′) dt
∣∣∣

=
∣∣∣ ∫ T

0

(Û` − U `, ϕ′ − I0ϕ′) dt
∣∣∣.

(3.15)
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By the uniform bound ‖U `‖L2((0,T );H2(Ω)) + ‖Û`‖L2(0,T ;H2(Ω)) 6 C1, we infer
that

(3.16)

∫ T

0

(Û`, ϕ
′) dt−

∫ T

0

(U `, ϕ
′) dt→ 0, `→∞,

and

(3.17)

∫ T

0

(LÛ`, ϕ
′) dt−

∫ T

0

(LU `, ϕ
′) dt→ 0, `→∞.

We can conclude, therefore, that u(1) = u(2) = ũ, and thus

(3.18) Û ′` + LU ` − f ⇀ ũ′ + Lũ− f, `→∞.

The convexity of
∫
ΩT
| · |2 implies weak lower semicontinuity, that is,

(3.19)

∫
ΩT

|ũ′ + Lũ− f |2 dxdt 6 lim inf
`→∞

∫
ΩT

|Û ′` + LU ` − f |2 dxdt

and therefore the proof is complete.

Lemma 3.2 (lim sup inequality) We assume that the operator Π̂q can be
represented as

(3.20) Π̂qv(t) =

q∑
i=0

˜̀
ni(t)v(t̃ni), t ∈ (tn, tn+1];

see (3.20). Let w ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩ H1
0 (Ω) ). Then,

there exists a recovery sequence {w`}, w` ∈ V`, such that w` → w and

G(w) = lim
`→∞

G`(w`).

Proof For w ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩ H1
0 (Ω) ), we choose a

smooth approximation (wδ) ⊂ C∞([0, T ];H2(Ω) ∩H1
0 (Ω) ) such that

‖w − wδ‖H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)) . δ and

|w′δ|H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)) .
1

δ
|w|H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)).

(3.21)

We assign to each δ a discrete function wδ,` ∈ V` satisfying (3.4) and (3.5).
The recovery sequence will be {wδ,`}, with appropriate δ = δ(`), and we shall
show that

(3.22) GIE,`(wδ,`)→ G(w) .
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We split the error,

‖ŵ′δ,` + Lwδ,` − w′ − Lw‖L2((0,T );L2(Ω))

6 ‖ŵ′δ,` + Lwδ,` − ŵ′δ − Lwδ‖L2((0,T );L2(Ω))

+ ‖ŵ′δ + Lwδ − w′δ − Lwδ‖L2((0,T );L2(Ω))

+ ‖w′δ + Lwδ − w′ − Lw‖L2((0,T );L2(Ω))

=: A1 +A2 +A3 .

(3.23)

Notice that since Π̂v(t) =
∑q
i=0

˜̀
ni(t)v(t̃ni), we have

∑q
i=0

˜̀
ni(t) = 1 and thus

q∑
i=0

˜̀′
ni(t) = 0

for all n. Hence,

‖v̂′‖2L2((0,T );L2(Ω)) =

N−1∑
n=0

∫
Jn

∥∥v̂′∥∥2
L2(Ω)

dt

=

N−1∑
n=0

∫
Jn

∥∥ q∑
i=0

˜̀′
ni(t)v(t̃ni)

∥∥2
L2(Ω)

dt

=

N−1∑
n=0

∫
Jn

∥∥ q∑
i=1

˜̀′
ni(t)(v(t̃ni)− v(t̃n0) )

∥∥2
L2(Ω)

dt

6
N−1∑
n=0

∫
Jn

q∑
i=1

‖˜̀′ni‖2L∞(Jn)

∥∥v(t̃ni)− v(t̃n0)
∥∥2
L2(Ω)

dt

6 C

N−1∑
n=0

1

kn

q∑
i=1

∥∥∫ t̃ni

t̃n0

v′(t) dt
∥∥2
L2(Ω)

6 C

N−1∑
n=0

q∑
i=1

∫ t̃ni

t̃n0

∥∥v′(t)∥∥2
L2(Ω)

dt

6 C

N−1∑
n=0

∫
Jn

∥∥v′(t)∥∥2
L2(Ω)

dt = C‖v′‖2L2((0,T );L2(Ω)).

(3.24)

Thus, for θ`(t) := wδ,`(t)− wδ(t) , we have

‖ŵ′δ,` − ŵ′δ‖2L2((0,T );L2(Ω)) = ‖θ̂′`‖2L2((0,T );L2(Ω))

6 C‖θ′`‖2L2((0,T );L2(Ω)).
(3.25)
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Next, we observe that

‖Lwδ,` − Lwδ‖L2((0,T );L2(Ω)) =
[N−1∑
n=0

∫
Jn

∥∥LΠq−1θ`
∥∥2
L2(Ω)

dt
]1/2

6
[N−1∑
n=0

∫
Jn

∥∥LΠq−1θ` − LP0θ`
∥∥2
L2(Ω)

dt
]1/2

+
[N−1∑
n=0

∫
Jn

∥∥LP0θ`
∥∥2
L2(Ω)

dt
]1/2

6 ‖LΠq−1θ` − Lθ`‖L2((0,T );L2(Ω)) + ‖Lθ` − LP0θ`‖L2((0,T );L2(Ω))

+ ‖Lθ`‖L2((0,T );L2(Ω))

6 Ck‖Lθ′`‖L2((0,T );L2(Ω)) + ‖Lθ`‖L2((0,T );L2(Ω)),

(3.26)

where we have set k = maxn kn. We have proved so far that

(3.27) A1 6 ‖θ′`‖L2((0,T );L2(Ω))+‖Lθ`‖L2((0,T );L2(Ω))+k ‖Lθ′`‖L2((0,T );L2(Ω)).

On the other hand, the approximation properties of Π̂q, Πq−1 imply

(3.28) A2 6 C k
[
‖w′′δ ‖L2((0,T );L2(Ω)) + ‖Lw′δ‖L2((0,T );L2(Ω))

]
.

Using (3.4), (3.5), and (3.21), we conclude, therefore, that

A1 +A2 +A3 6 β`(wδ) +
k

δm+1
β̃`‖w‖L2((0,T );H2(Ω))

+ C
k

δ
‖w‖H1((0,T );L2(Ω))∩L2((0,T );H2(Ω)) + Cδ.

(3.29)

The proof of (3.22) is completed by suitably selecting δ = δ(`, k) in order that
the right-hand side of (3.29) converges to zero.

Remark 3.2 (On the abstract assumptions on Π̂q, Πq−1) Notice that the as-

sumption (3.20) requires only that Π̂q is any interpolant onto piecewise poly-
nomials of degree q which preserves continuity at the nodes, i.e., t̃n0 = tn
and t̃nq = tn+1. For certain methods, for example, for collocation methods
where the nodes include at least one endpoint of [0, 1] and for discontinu-
ous Galerkin methods, one may select t̃ni = tni, i = 1, . . . , q, which may be
convenient from computational perspective. Assumption (3.12) requires essen-
tially that the interpolatory quadrature induced by Πq−1 integrates exactly
piecewise polynomials of degree q. This assumption is always satisfied by the
methods considered in Section 4.

Next we shall combine the above results to show that the sequence of
discrete minimizers (u`) converges in L2((0, T );H1(Ω)) to the exact solution
of our problem. We shall use the Aubin–Lions Lemma which is an analogue of
the Rellich–Kondrachov theorem in the parabolic case; see, e.g., [52].
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Lemma 3.3 (Aubin–Lions Lemma) Let B0, B,B1 be three Banach spaces,
with B0, B1 reflexive. Suppose that B0 is continuously embedded into B, which
is also continuously embedded into B1, and the embedding from B0 into B is
compact. For any given p0, p1 with 1 < p0, p1 <∞, let

W = {v | v ∈ Lp0((0, T );B0) , vt ∈ Lp1((0, T );B1)}.(3.30)

Then, the embedding from W into Lp0((0, T );B) is compact.

We are now ready to conclude the proof of the main result of this section.

Theorem 3.1 (Convergence) Let G, G` be the energy functionals defined
in (3.2) and (2.14), respectively. Let u be the exact solution of (3.1) and let
(u`), u` ∈ V`, be a sequence of minimizers of G`, i.e.,

(3.31) G`(u`) = inf
v`∈W`

G`(v`) .

Then,

(3.32) û` → u, in L2((0, T );H1(Ω)),

where û` = Π̂qu` .

Proof Our assumptions imply that the solution u of (3.1) satisfies u ∈ L2((0, T );
H2(Ω) ∩H1

0 (Ω)) ∩H1((0, T );L2(Ω)), and the elliptic regularity

‖u‖L2((0,T );H2(Ω)) 6 C‖Lu‖L2((0,T );L2(Ω))

is valid. Consider the sequence of minimizers (u`) . By their definition,

G`(u`) 6 G`(v`), for all v` ∈ V` .

In particular, G`(u`) 6 G`(ũ`), where ũ` is the recovery sequence wδ,` corre-
sponding to w = u constructed in Lemma 3.2. Since G`(ũ`) converges to G(u),
we infer that the sequence G`(u`) is uniformly bounded. The stability of the
discrete functional of Proposition 3.1 yields the uniform bound

‖u`‖L2((0,T );H2(Ω)) + ‖û`‖L2((0,T );H2(Ω)) + ‖û′`‖L2((0,T );L2(Ω)) 6 C.(3.33)

Applying the Aubin–Lions Lemma, we conclude the existence of ũ ∈ L2((0, T );
H1(Ω)) such that û` → ũ in L2((0, T );H1(Ω)) up to a subsequence not re-
labeled. Furthermore, the arguments in Lemma 3.1 show that Lũ ∈ L2((0, T );
L2(Ω)) . Next we show that ũ is the minimizer of G, and hence ũ = u. Indeed,
let w ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩H1

0 (Ω)), and let (w`) be such
that w` → w and

G(w) = lim
`→∞

G`(w`).

Therefore, the lim inf inequality and the fact that u` are minimizers of the
discrete problems imply that

(3.34) G(ũ) 6 lim inf
`→∞

G`(u`) 6 lim sup
`→∞

G`(u`) 6 lim sup
`→∞

G`(w`) = G(w),

for all w ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H2(Ω) ∩ H1
0 (Ω)). Thus, ũ is the

minimizer of G, and thus ũ = u and the entire sequence satisfies

û` → u, in L2((0, T );H1(Ω)).
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4 Discrete maximal parabolic L2 regularity in Hilbert spaces

We consider the discretization of differential equations satisfying the maxi-
mal parabolic regularity property in Hilbert spaces by B-stable Runge–Kutta
methods, the Lobatto IIIA methods, and Galerkin time-stepping methods. We
establish discrete maximal parabolic L2 regularity by the energy technique.

4.1 An abstract initial value problem

We consider an initial value problem for a linear parabolic equation,

(4.1)

{
u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = u0,

in a Hilbert space (H, (·, ·)). We denote the induced norm by |·|, |v| = (v, v)1/2,
v ∈ H. We assume that A is a coercive, self-adjoint, densely defined operator
on H, u0 ∈ V := D(A1/2), and f ∈ L2((0, T );H).

Taking the squares of the norms of both sides of the differential equation
in (4.1), we have

|u′(s)|2 + |Au(s)|2 + 2(u′(s), Au(s)) = |f(s)|2,

i.e.,

|u′(s)|2 + |Au(s)|2 +
d

ds
|A1/2u(s)|2 = |f(s)|2.

Integration from s = 0 to s = t ∈ (0, T ] yields the well-known maximal L2

regularity,

|A1/2u(t)|2 + ‖u′‖2L2((0,t);H) + ‖Au‖2L2((0,t);H)

= |A1/2u0|2 + ‖f‖2L2((0,t);H) ∀f ∈ L2((0, t);H).
(4.2)

In other words, for vanishing initial value u0, the functions u′ and Au are well
defined and have the same regularity as their sum u′ + Au, that is, the given
forcing term f ; the sum of the norms and the norm of the sum are equivalent.

We refer to the lecture notes [31] and to the review article [19] for excellent
accounts of the maximal Lp-regularity theory. Coercive elliptic differential op-
erators on Ls(Ω), 1 < s < ∞, with general boundary conditions possess the
maximal Lp-regularity property; see [31], [19], and references therein. For max-
imal Lp-regularity properties of Runge–Kutta methods, see [30] and references
therein.
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4.2 The numerical methods

Recall that we are using a partition of the time interval [0, T ] into subintervals
Jn := (tn, tn+1], n = 0, . . . , N, and kn = |Jn|. Our results apply to arbitrary
partitions.

For s ∈ N0, we denote by P(s) the space of polynomials of degree at most
s with coefficients in D(A), the domain of the operator A, i.e., the elements g
of P(s) are of the form

g(t) =

s∑
j=0

tjwj , wj ∈ D(A), j = 0, . . . , s.

With this notation, let Vc
k(s) and Vd

k (s) be the spaces of continuous and pos-
sibly discontinuous, respectively, piecewise elements of P(s),

Vc
k(s) := {v ∈ C

(
[0, T ]; D(A)

)
: v|Jn ∈ P(s), n = 0, . . . , N − 1},

Vd
k (s) := {v : [0, T ]→ D(A), v|Jn ∈ P(s), n = 0, . . . , N − 1}.

The spaces Hc
k(s) and Hd

k(s) are defined analogously, with coefficients wj ∈ H.

The numerical methods we consider here can be cast in the following ab-
stract form: For q ∈ N, and two given projection or interpolation operators
Πq−1, Π̃q−1 : C

(
[0, T ];H

)
→ Hd

k(q − 1), seek Û ∈ Vc
k(q) satisfying the initial

condition Û(0) = u0 and the pointwise equations

(4.3) Û ′(t) +AΠq−1Û(t) = Π̃q−1f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Collocation methods as well as Galerkin time-stepping methods can be written
in the form (4.3); see [4]. More precisely, Û is the collocation approximation
and the continuous Galerkin approximation for these two classes of methods,
and a suitable reconstruction of the solution for the discontinuous Galerkin
method. Moreover, as we shall see, our key assumption (4.4) in Theorem 4.1 is
satisfied for the Galerkin time-stepping methods as well as for some important
collocation methods such as the Gauss, Radau IIA, and Lobatto IIIA methods.
Furthermore, in Section 4.4.3 we show maximal regularity estimates of all
algebraically stable Runge–Kutta methods.

Remark 4.1 (On the starting value) We assume that the starting value U0 = u0
belongs to D(A). For some methods, like the continuous Galerkin, Gauss, and
Lobatto IIIA methods, this condition is needed to ensure existence of smooth
approximate solutions. For methods with the smoothing property, in the sense
that Πq−1Û is D(A)-valued for positive t even for u0 ∈ V = D(A1/2), the

milder condition u0 ∈ V suffices. In the latter case, the approximation Û is
V -valued in the first subinterval [0, t1); it is D(A)-valued only at the points of

this subinterval where it coincides with Πq−1Û .
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Theorem 4.1 (Maximal L2 regularity for methods of the form (4.3))
Assume that the operator Πq−1 in (4.3) is such that∫ tn+1

tn

(Û ′(t), AΠq−1Û(t)) dt >
∫ tn+1

tn

(Û ′(t), AÛ(t)) dt

=
1

2

(
|A1/2Û(tn+1)|2 − |A1/2Û(tn)|2

)
.

(4.4)

Then, the method satisfies the following discrete analogue of the continuous
maximal L2 regularity property (4.2)

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖AΠq−1Û‖2L2((0,tm);H)

6 |A1/2Û(0)|2 + ‖Π̃q−1f‖2L2((0,tm);H)

(4.5)

for m = 1, . . . , N.

Proof Taking the squares of the norms of both sides of the pointwise form
(4.3) of the abstract numerical method, we infer that

|Û ′(t)|2 + |AΠq−1Û(t)|2 + 2(Û ′(t), AΠq−1Û(t)) = |Π̃q−1f(t)|2, t ∈ (tn, tn+1].

Integration over Jn = (tn, tn+1] yields

∫ tn+1

tn

|Û ′(t)|2 dt+

∫ tn+1

tn

|AΠq−1Û(t)|2 dt+ 2

∫ tn+1

tn

(Û ′(t), AΠq−1Û(t)) dt

=

∫ tn+1

tn

|Π̃q−1f(t)|2 dt.

(4.6)

Now, utilizing our assumption (4.4) in (4.6), we can estimate the last term on
the left-hand side from below and obtain

|A1/2Û(tn+1)|2 +

∫ tn+1

tn

|Û ′(t)|2 dt+

∫ tn+1

tn

|AΠq−1Û(t)|2 dt

6 |A1/2Û(tn)|2 +

∫ tn+1

tn

|Π̃q−1f(t)|2 dt.

(4.7)

Summation over n from n = 0 to n = m − 1 6 N − 1, yields the asserted
maximal regularity estimate (4.5).

4.3 Galerkin time-stepping methods

4.3.1 Continuous Galerkin methods

For q ∈ N, with starting value U(0) = u0, we consider the discretization of the
initial value problem (4.1) by the continuous Galerkin method cG(q), i.e., we

seek Û ∈ Vc
k(q) such that

(4.8)

∫
Jn

(
(Û ′, v) + (AÛ, v)

)
dt =

∫
Jn

(f, v) dt ∀v ∈ P(q − 1)
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for n = 0, . . . , N − 1. Denoting by Pq−1 the piecewise L2-projection onto

Hd
k(q − 1) and using the fact that Û ′ ∈ Vd

k (q − 1), we see that the pointwise
form of (4.8) is

(4.9) Û ′ +APq−1Û = Pq−1f,

which is (4.3) with Πq−1 := Π̃q−1 := Pq−1.

In this case, since Û ′ ∈ Vd
k (q − 1), we have∫ tn+1

tn

(Û ′(t), AÛ(t)−APq−1Û(t)) dt = 0

and see that the key assumption (4.4) holds true as an equality.
It will be useful to observe the following relation

(4.10)

∫ tn+1

tn

(ϕ, IG,q−1W (t)) dt =

∫ tn+1

tn

(ϕ,W (t)) dt ∀ϕ ∈ P(q − 1) ,

where W ∈ P(q) and IG,q−1v ∈ P(q − 1) denotes the interpolant of v at
the q Gauss points of Jn; indeed, the integrand (ϕ,W − IG,q−1W ) ∈ P2q−1
is integrated exactly by the Gauss quadrature formula with q nodes and it
vanishes at these nodes. Therefore,

Pq−1|P(q) = IG,q−1.

Therefore, as an immediate consequence of Theorem 4.1, we have the fol-
lowing maximal L2 regularity of cG methods:

Proposition 4.1 (Maximal L2 regularity of cG methods) The cG meth-
ods satisfy the following analogue of the continuous maximal L2 regularity
property (4.2)

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖APq−1Û‖2L2((0,tm);H)

= |A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖AIG,q−1Û‖2L2((0,tm);H)

= |A1/2Û(0)|2 + ‖Pq−1f‖2L2((0,tm);H)

(4.11)

for m = 1, . . . , N.

Since, obviously,∫ tn+1

tn

|Pq−1f(t)|2 dt 6
∫ tn+1

tn

|f(t)|2 dt

=⇒ ‖Pq−1f‖2L2((0,tm);H) 6 ‖f‖
2
L2((0,tm);H),

(4.12)

(4.11) yields also the estimate

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖APq−1Û‖2L2((0,tm);H)

6 |A1/2Û(0)|2 + ‖f‖2L2((0,tm);H)

(4.13)

for m = 1, . . . , N.
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4.3.2 Discontinuous Galerkin methods

For q ∈ N, with starting value U(0) = u0, we consider the discretization of the
initial value problem (4.1) by the discontinuous Galerkin method dG(q − 1),
i.e., we seek U ∈ Vd

k (q − 1) such that

(4.14)

∫
Jn

(
(U ′, v)+(AU, v)

)
dt+(U+

n −Un, v+n ) =

∫
Jn

(f, v) dt ∀v ∈ P(q−1)

for n = 0, . . . , N − 1. As usual, we use the notation vn := v(tn), v+n :=
lims↘0 v(tn + s).

Following [36], we define the reconstruction Û of the dG approximation U,
the analogue of the collocation approximation, by extended interpolation at
the Radau nodes tni = tn + cikn, 0 < c1 < · · · < cq = 1,

Û(tni) = U(tni), i = 0, . . . , q (U(tn0) = Un).

The reconstruction satisfies the relations

Û+
n = Un,∫
Jn

(Û ′, v) dt =

∫
Jn

(U ′, v) dt+ (U+
n − Un, v+n ) ∀v ∈ P(q − 1).

(4.15)

Consequently, we can reformulate the discontinuous Galerkin method (4.14)
as

(4.16)

∫
Jn

(
(Û ′, v) + (AU, v)

)
dt =

∫
Jn

(f, v) dt ∀v ∈ P(q − 1).

Denoting again by Pq−1 the piecewise L2-projection onto Hd
k(q − 1), we see

that the pointwise form of (4.16) is

(4.17) Û ′ +AU = Pq−1f,

i.e.,

(4.18) Û ′ +AIq−1Û = Pq−1f,

which is (4.3) with Πq−1 := Iq−1, the interpolation operator at the Radau

nodes, and Π̃q−1 := Pq−1.
Let us now see that our key assumption (4.4) is satisfied also in this case,

i.e., that

(4.19)

∫ tn+1

tn

(
Û ′(t), A(Û(t)− Iq−1Û(t))

)
dt 6 0.

It is advantageous to reformulate (4.19) in the form∫ tn+1

tn

(
(Û − Iq−1Û)′(t), A(Û(t)− Iq−1Û(t))

)
dt

+

∫ tn+1

tn

(
(Iq−1Û)′(t), A(Û(t)− Iq−1Û(t))

)
dt 6 0.

(4.20)
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Now, the integrand π̃ :=
(
(Iq−1Û)′(·), A(Û(·)− Iq−1Û(·))

)
in the second inte-

gral in (4.20) is a polynomial of degree at most 2q−2; therefore, π̃ is integrated
exactly by the Radau quadrature formula with q nodes. Furthermore, π̃ van-
ishes at the quadrature nodes tn1, . . . , tnq. Thus, the second integral vanishes,
and (4.19) can be written in the form∫ tn+1

tn

(
Û ′(t)− (Iq−1Û)′(t), A(Û(t)− Iq−1Û(t))

)
dt 6 0,

i.e.,
1

2

∫ tn+1

tn

d

dt
|A1/2(Û(t)− Iq−1Û(t))|2 dt 6 0,

that is, since tnq = tn+1,

−1

2
|A1/2(Û(tn)− (Iq−1Û)(tn+))|2 6 0,

which is obviously valid. Therefore, (4.19) is valid.
In view of (4.19), as an immediate consequence of Theorem 4.1, we have

the following maximal L2 regularity of dG methods:

Proposition 4.2 (Maximal L2 regularity of dG methods) The dG meth-
ods satisfy the following analogue of the continuous maximal L2 regularity
property (4.2)

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖AU‖2L2((0,tm);H)

6 |A1/2Û(0)|2 + ‖Pq−1f‖2L2((0,tm);H)

(4.21)

for m = 1, . . . , N.

In view of (4.12), (4.17) yields also the estimate

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖AU‖2L2((0,tm);H)

6 |A1/2Û(0)|2 + ‖f‖2L2((0,tm);H)

(4.22)

for m = 1, . . . , N.

4.4 Collocation Runge–Kutta methods

For q ∈ N, let 0 6 c1 < · · · < cq 6 1 denote the collocation nodes. The

collocation approximation Û ∈ Vc
k(q) satisfies the initial condition Û(0) = u0

as well as the collocation conditions

(4.23) Û ′(tni) +AÛ(tni) = f(tni), i = 1, . . . , q, n = 0, . . . , N − 1.

Here, we assumed that f(t) ∈ H for t ∈ [0, T ]. Thus, [3] and [4], if we let
Iq−1 : C

(
[0, T ];H

)
→ Hd

k(q − 1) denote the interpolation operator at the
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collocation nodes tni, i = 1, . . . , q, n = 0, . . . , N − 1, and use the fact that
Û ′ ∈ Vd

k (q − 1), we can write (4.23) in pointwise form as

(4.24) Û ′(t) +AIq−1Û(t) = Iq−1f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1,

which is (4.3) with Πq−1 := Π̃q−1 := Iq−1. The interpolants U := Iq−1Û
and Iq−1f are elements of Vd

k (q − 1) and Hd
k(q − 1), respectively, and thus, in

general, for positive c1, discontinuous at the nodes t0, . . . , tN−1.
The corresponding q-stage Runge–Kutta method is specified by the coeffi-

cients

(4.25) aij =

∫ ci

0

`j(τ) dτ, bi =

∫ 1

0

`i(τ) dτ, i, j = 1, . . . , q;

here, `1, . . . , `q ∈ Pq−1 are the Lagrange polynomials for the collocation nodes
c1, . . . , cq, `i(cj) = δij , i, j = 1, . . . , q. In other words, the stage order of the
Runge–Kutta method is q.

With starting value U0 = u0, we now consider the discretization of the
initial value problem (4.1) by the q-stage Runge–Kutta method (4.25): we
recursively define approximations U` ∈ D(A) to the nodal values u(t`), as well
as internal approximations U`i ∈ D(A) to the intermediate values u(t`i), by

(4.26)


Uni = Un − kn

q∑
j=1

aij
(
AUnj − f(tnj)

)
, i = 1, . . . , q,

Un+1 = Un − kn
q∑
i=1

bi
(
AUni − f(tni)

)
,

n = 0, . . . , N − 1. Here, we assumed that f(t) ∈ H for t ∈ [0, T ].
It is well known that the collocation and Runge–Kutta methods (4.23)

and (4.26), respectively, are equivalent in the sense that they yield the same
approximations at the nodes and at the intermediate nodes, i.e.,

(4.27)
Û(tn) = Un, n = 1, . . . , N,

Û(tni) = Uni, i = 1, . . . , q, n = 0, . . . , N − 1.

4.4.1 Maximal regularity of Gauss and Radau IIA methods

We treat this case separately for various reasons: (i) These two families of
Runge–Kutta methods are particularly interesting and popular for parabolic
equations. (ii) The methods satisfy our key assumption (4.4) and, consequently,
discrete analogues of the continuous maximal L2 regularity property (4.2),
with inequality in the place of the equality for the Radau IIA methods. (iii)
The proofs are short and elegant, immediate consequences of the abstract
result in Theorem 4.1.

We have already seen that assumption (4.4) is satisfied for the Radau IIA
methods; see (4.18) and recall that Iq−1 there is the interpolation operator at
the Radau nodes tn1, . . . , tnq.
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Now, we will see that the Gauss method satisfies (4.19) as an equality, with
Iq−1 now, of course, the interpolation operator at the Gauss nodes tn1, . . . , tnq.

Indeed, the integrand π :=
(
Û ′(·), A(Û(·)−Iq−1Û(·))

)
in (4.19) is a polynomial

of degree at most 2q − 1; therefore, π is integrated exactly by the Gauss
quadrature formula with q nodes. Furthermore, π vanishes at the quadrature
nodes tn1, . . . , tnq. Thus, (4.19) holds as an equality in this case.

In view of (4.19), as an immediate consequence of Theorem 4.1, we have the
following maximal L2 regularity property for Gauss and Radau IIA methods:

Proposition 4.3 (Maximal L2 regularity of Gauss and Radau IIA
methods) The Gauss and Radau IIA methods satisfy the exact discrete ana-
logues of the continuous maximal L2 regularity property (4.2), namely,

|A1/2Û(tm)|2 + ‖Û ′‖2L2((0,tm);H) + ‖AIq−1Û‖2L2((0,tm);H)

6 |A1/2Û(0)|2 + ‖Iq−1f‖2L2((0,tm);H),
(4.28)

for m = 1, . . . , N, with equality for the Gauss methods.

Let us now give an alternative form of (4.28).

Proposition 4.4 (Alternative form of the maximal L2 regularity of
Gauss and Radau IIA methods) Let 0 < c1, . . . , cq 6 1 and b1, . . . , bq be
the nodes and the weights of the Gauss and Radau quadrature formulas in the
interval [0, 1], respectively. Then, the Gauss and Radau IIA methods satisfy
the maximal L2 regularity property

|A1/2Um|2 +

m−1∑
n=0

kn

q∑
i=1

bi|Û ′(tni)|2 +

m−1∑
n=0

kn

q∑
i=1

bi|AUni|2

6 |A1/2U0|2 +

m−1∑
n=0

kn

q∑
i=1

bi|f(tni)|2
(4.29)

for m = 1, . . . , N, with equality for the Gauss methods. Here, in the case of the
Radau IIA methods, Û ′(tnq) stands for the left-hand derivative at tn+1, limt↗tn+1

Û ′(t).

Proof Obviously, |Û ′|2, |AIq−1Û |2, and |Iq−1f |2 are integrated exactly by both
the Gauss and Radau quadrature formulas in each subinterval [tn, tn+1] as
polynomials of degree at most 2q − 2. Consequently, for instance,

∫ tn+1

tn

|Û ′(t)|2 dt = kn

q∑
i=1

bi|Û ′(tni)|2,

and (4.28) can be equivalently written in the form (4.29).
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4.4.2 Maximal regularity of Lobatto IIIA methods

Here, we focus on the Lobatto IIIA methods, which are A-stable but are not
B-stable. So, for q ∈ N, let 0 = c1 < · · · < cq = 1 denote the Lobatto nodes;

then, the collocation approximation Û ∈ Vc
k(q) satisfies the initial condition

Û(0) = u0 as well as the collocation conditions

(4.30) Û ′(tni) +AÛ(tni) = f(tni), i = 1, . . . , q, n = 0, . . . , N − 1.

We assumed that f(t) ∈ H for t ∈ [0, T ]. In this case, the pointwise form of
the method is again

(4.31) Û ′(t) +AIq−1Û(t) = Iq−1f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1;

compare to (4.24). Notice, however, the important fact that the interpolants

Ũ := Iq−1Û and Iq−1f are now elements of Vc
k(q − 1) and Hc

k(q − 1), respec-
tively, since c0 = 0 and cq = 1, and thus are continuous functions at the nodes
t0, . . . , tN−1.

Now, we claim that the interpolant Ũ = Iq−1Û ∈ Vc
k(q− 1) of the Lobatto

collocation approximation Û is the solution of a modified continuous Galerkin
(cG) method in Vc

k(q − 1), namely, Ũ ∈ Vc
k(q − 1) is such that

(4.32)

∫ tn+1

tn

(
(Ũ ′, v) + (AŨ, v)

)
dt =

∫
Jn

(Iq−1f, v) dt ∀v ∈ P(q − 2)

for n = 0, . . . , N − 1, with the modification consisting in the fact that the
forcing term f on the right-hand side has been replaced by its interpolant
Iq−1f. Compare to (4.8) and notice that (4.32) is a modification of the cG(q−1)
rather than the cG(q) method.

Now, (4.31) implies

(4.33)

∫ tn+1

tn

(
(Û ′, v) + (AŨ, v)

)
dt =

∫ tn+1

tn

(Iq−1f, v) dt ∀v ∈ P(q − 2)

for n = 0, . . . , N − 1. In view of the fact that Ũ = Iq−1Û , (4.32) follows
immediately from (4.31) provided

(4.34)

∫ tn+1

tn

(Û ′ − (Iq−1Û)′, v) dt = 0 ∀v ∈ P(q − 2).

Since (Iq−1Û)(tm) = Û(tm), integrating by parts, we can rewrite (4.34) as

(4.35)

∫ tn+1

tn

(Û − Iq−1Û , v′) dt = 0 ∀v ∈ P(q − 2).

Now, the integrand π :=
(
Û(·) − Iq−1Û(·), v′(·)) in (4.35) is a polynomial

of degree at most 2q − 3; therefore, π is integrated exactly by the Lobatto
quadrature formula with q nodes. Furthermore, π vanishes at the quadrature
nodes tn1, . . . , tnq. Thus, (4.35), and hence also (4.34), is indeed valid.

It is straightforward now to apply the maximal regularity estimate for the
continuous Galerkin method to conclude:
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Proposition 4.5 (Maximal L2 regularity of Lobatto IIIA methods)
Let IG,q−2v ∈ P(q− 2) denote the interpolant of v at the q− 1 Gauss points of
Jn. The Lobatto IIIA methods satisfy the following analogue of the continuous
maximal L2 regularity property (4.2)

|A1/2Um|2 + ‖Ũ ′‖2L2((0,tm);H) + ‖AIG,q−2Ũ‖2L2((0,tm);H)

= |A1/2U0|2 + ‖Pq−2Iq−1f‖2L2((0,tm);H)

(4.36)

and

|A1/2Um|2 + ‖Ũ ′‖2L2((0,tm);H) + ‖AIG,q−2Ũ‖2L2((0,tm);H)

6 |A1/2U0|2 + ‖Iq−1f‖2L2((0,tm);H)

(4.37)

for m = 1, . . . , N.

Remark 4.2 (The Trapezoidal Method) It is interesting to note that for the
trapezoidal method, one is able to prove directly the maximal regularity prop-
erty,

|A1/2Um|2 +

m−1∑
n=0

kn

∣∣∣Un+1 − Un
kn

∣∣∣2 +

m−1∑
n=0

kn

∣∣∣AUn+1 +AUn
2

∣∣∣2
= |A1/2U0|2 +

m−1∑
n=0

kn

∣∣∣f(tn+1) + f(tn)

2

∣∣∣2,(4.38)

which is identical to (4.36) for q = 2. Hence, (4.36) is a natural but nonobvious
generalization of (4.38).

Remark 4.3 (Alternative version of (4.38)) Maximal regularity estimates of
the form

(4.39)

m−1∑
n=0

k
∣∣∣Un+1 − Un

k

∣∣∣2 +

m∑
n=1

k|AUn|2 6 C

m∑
n=0

k|f(tn)|2

for the trapezoidal method for constant time steps, and for U0 = 0, are es-
tablished in [30, Theorem 3.2], actually for any p ∈ (1,∞) and for general
UMD Banach spaces. An advantage of (4.38) is that it holds as an equality
and it is valid for arbitrary partitions. High order Lobatto IIIA methods are
not included in the analysis in [30, Theorem 3.2].

Remark 4.4 (Equivalence between Û and Ũ) If the Lobatto collocation ap-

proximation Û is available in a subinterval J̄n = [tn, tn+1], then Ũ ∈ P(q − 1)

is obviously the interpolant of Û at the Lobatto nodes,

(4.40) Ũ(tni) = Û(tni), i = 1, . . . , q.

Conversely, it Ũ is available in J̄n, then the Lobatto collocation approximation
Û ∈ P(q) is uniquely determined by the interpolation conditions

(4.41) Û(tni) = Ũ(tni), i = 1, . . . , q, Û ′(tn) = −AŨ(tn) + f(tn).
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4.4.3 Maximal regularity of algebraically stable Runge–Kutta methods

Our main assumption on the Runge–Kutta method is that it is B-stable. Since
the collocation nodes c1, . . . , cq are pairwise distinct, it is well known that the
B-stability is equivalent to the algebraic stability of the method; in other words,
the weights b1, . . . , bq are nonnegative and the q×q symmetric matrix M with
entries mij := biaij + bjaji − bibj , i, j = 1, . . . , q, is positive semidefinite,

(4.42) bi > 0, i = 1, . . . , q, and M ∈ Rq,q is positive semidefinite.

Notice that, in the case of positive c1, the coefficient matrix Oι := (aij)i,j=1,...,q

∈ Rq,q of the Runge–Kutta method is invertible since the collocation nodes
c1, . . . , cq are pairwise distinct and positive.

In the following calculations we closely follow the proof that algebraically
stable methods are B-stable. With ϕj := −kn

(
AUnj−f(tnj)

)
= −knÛ ′(tnj) ∈

D(A) (see (4.23) and (4.27)), we apply A1/2 to (4.26) and write it in the form

(4.43)


A1/2Uni = A1/2Un +A1/2

q∑
j=1

aijϕj , i = 1, . . . , q,

A1/2Un+1 = A1/2Un +A1/2

q∑
i=1

biϕi.

We take the squares of the norms of both sides of the second relation of (4.43),
use the notation 〈〈v, w〉〉 := (A1/2v,A1/2w) for the A-induced inner product,
and obtain

(4.44) |A1/2Un+1|2 = |A1/2Un|2 + 2

q∑
i=1

bi〈〈ϕi, Un〉〉+

q∑
i,j=1

bibj〈〈ϕi, ϕj〉〉.

Using here the first relations of (4.43) we get

q∑
i=1

bi〈〈ϕi, Un〉〉 =

q∑
i=1

bi〈〈ϕi, Uni〉〉 −
q∑

i,j=1

biaij〈〈ϕi, ϕj〉〉,

and (4.44) leads to

|A1/2Un+1|2 = |A1/2Un|2 −
q∑

i,j=1

mij〈〈ϕi, ϕj〉〉+ 2

q∑
i=1

bi(ϕi, AUni),

and, in view of the positive semidefiniteness of the matrix M, to

(4.45) |A1/2Un+1|2 6 |A1/2Un|2 + 2

q∑
i=1

bi(ϕi, AUni).
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Replacing ϕi by −kn
(
AUni − f(tni)

)
in the second term on the right-hand

side, we obtain

(ϕi, AUni) = −kn(AUni, AUni) + kn(f(tni), AUni)

= −kn|AUni|2 + k(f(tni), AUni);

thus, (4.45) yields

(4.46) |A1/2Un+1|2+2kn

q∑
i=1

bi|AUni|2 6 |A1/2Un|2+2kn

q∑
i=1

bi(f(tni), AUni).

Using here the binomial identity

2(f(tni), AUni) = −|AUni − f(tni)|2 + |AUni|2 + |f(tni)|2

= −|Û ′(tni)|2 + |AUni|2 + |f(tni)|2,

we infer that

|A1/2Un+1|2 + kn

q∑
i=1

bi|Û ′(tni)|2 + kn

q∑
i=1

bi|AUni|2

6 |A1/2Un|2 + kn

q∑
i=1

bi|f(tni)|2.
(4.47)

Summing here over n from n = 0 to n = m−1 6 N−1, we obtain the maximal
regularity estimate

|A1/2Um|2 +

m−1∑
n=0

kn

q∑
i=1

bi|Û ′(tni)|2 +

m−1∑
n=0

kn

q∑
i=1

bi|AUni|2

6 |A1/2U0|2 +

m−1∑
n=0

kn

q∑
i=1

bi|f(tni)|2,

(4.48)

m = 1, . . . , N, a discrete analogue of (4.2). Notice that (4.48) reduces to (4.29)
for the Gauss and Radau IIA methods.

5 General evolution problems and numerical results

5.1 Problem Setup

In this section we present numerical results for the Runge–Kutta PINNs for
both linear parabolic and wave equations. We would like to demonstrate that
the resulting methods work as expected and in addition preserve the qualita-
tive behavior of Runge–Kutta methods. We begin with the following general
setup of the problem. Let u : Ω × (0, T ] → RM , where T > 0 and u = u(x, t)
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is a vector-valued function with M components. Let A be a differential oper-
ator acting on u which involves spatial derivatives. Our general initial value
problem can be written as follows:

ut +Au = f(x, t), (x, t) ∈ Ω × [0, T ],(5.1)

u(x, 0) = u0, x ∈ Ω,(5.2)

with additional boundary conditions for t ∈ [0, T ]. In the numerical experi-
ments below the boundary conditions are either Neumann (for the heat equa-
tion) or Dirichlet (for the wave equation). The formulation of the methods
can be directly extended to nonlinear evolution equations with the obvious
modifications in the loss functionals; see [3].

5.2 Collocation Runge–Kutta Formulation

Let the collocation points on [tn, tn+1] be defined by tni = tn + cikn, i =
1, . . . , q, where 0 6 c1 < c2 < · · · < cq 6 1, and kn = tn+1 − tn is the width of
each interval.

Furthermore, we let 0 = c̃0 < c̃1 < · · · < c̃q = 1 be auxiliary points as
introduced in Section 2.4.2, and

(5.3) û(x, t) = Îqu(x, t) =

q∑
i=0

˜̀
ni(t)u(x, t̃ni) =

q∑
i=0

˜̀
i

(
t− tn
kn

)
u(x, t̃ni),

where t̃ni = tn + c̃ikn. As it will become clear in Section 5.4, in the case of
Radau IIA and Lobatto IIIA methods, the points 0 = c̃0 < c̃1 < · · · < c̃q = 1
include all the collocation points c1, . . . , cq.

Furthermore we need to interpolate at the collocation points the function
û(x, t), i.e.,

(5.4) LIq−1û(x, t) =

q∑
j=1

`j

(
t− tn
kn

) q∑
i=0

˜̀
i

(
tnj − tn
kn

)
Lu(x, t̃ni).

Consider a fixed interval [tn, tn+1]. Recall that in the loss, one has to eval-
uate integrals of

(5.5) ût(x, t) + LIq−1û(x, t) =: ζ(x, t), t ∈ [tn, tn+1], x ∈ Ω.

At the colocation points {tnj}qj=1 it is straightforward to express the time
derivative of û and the interpolant Iq−1Lû as follows:
(5.6)

ût(x, tnj) = k−1n

q∑
i=0

˜̀′
i(cj)u(x, t̃ni), LIq−1û(x, tnj) =

q∑
i=0

˜̀
i(cj)Lu(x, t̃ni).
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Within the subinterval [tn, tn+1], we have

ζ(x, tnj) =ût(x, tnj) + LIq−1û(x, tnj)

=

q∑
i=0

(
k−1n

˜̀′
i(cj)u(x, t̃nj)− ˜̀

i(cj)Lu(x, t̃nj)
)
, x ∈ Ω,

(5.7)

and since ût(x, ·) + Iq−1Lû(x, ·) is a polynomial of degree q − 1

(5.8) ζ(x, t) = ût(x, t) + LIq−1û(x, t) =

q∑
j=1

`j

(
t− tn
kn

)
ζ(x, tnj), x ∈ Ω.

5.3 Artificial Neural Network Representation

We approximate the solution of our problem within the neural network func-
tion space. The objective is to find θ? ∈ Θ such that the m-th output Um of
the neural network approximates the target function um(·, t̃ni). Specifically, we
require that the neural network output satisfies the following approximation

Um(x, t̃ni; θ
?) ≈ um(x, t̃ni), n = 0, . . . , N, i = 1, . . . , q, x ∈ Ω.

We denote the time-space variable as y = (x, t) ∈ Rd+1. We employ the deep
residual ANN architecture proposed by Sirignano and Spiliopoulos [47]. More
specifically, for a time-space input y, we define:

S0 = tanh(W iny + bin),

DGM layer

| G` = tanh(V g,`y +W g,`S`−1 + bg,`), ` = 1, . . . , L

| Z` = tanh(V z,`y +W z,`S`−1 + bz,`), ` = 1, . . . , L

| R` = tanh(V r,`y +W r,`S`−1 + br,`), ` = 1, . . . , L

| H` = tanh(V h,`y +Wh,`(S`−1 �R`) + bh,`), ` = 1, . . . , L

b S` = (1−G`)�H` + Z` � S`−1, ` = 1, . . . , L

U(y; θ) = W outSL + bout,

where L denotes the number of hidden layers and � represents the Hadamard
product. The trainable parameters θ of the model are:

(5.9) θ = {W in, bin, (V ?,`,W ?,`, b?,`)
?∈{g,z,r,h}
`=1,...,L ,W out, bout}.

To train the neural network, we compute discrete approximations of the
cost functional based on samples from Ω. For simplicity we consider f =
0; the modifications being obvious otherwise. The discrete cost functional is
computed as follows:

(5.10) CΩ [θ] =
Vol(Ω)

R

M∑
m=1

R∑
r=1

N∑
n=1

∫
Jn

ζm(xr, t)
2 dt,
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where ζm denotes the m-th component of ζ which is given by (5.8) and the
set of points {xr}Rr=1 is generated using Sobol’s low-discrepancy sequences;
see, e.g., [13]. This sampling approach is more efficient for achieving a uniform
coverage of the space in higher–dimensonal settings. The integral in time is
computed exactly by applying integration rules which are exact for polynomi-
als of degree 2q − 2. In the case where we have Gauss or Radau collocation
points this integral is just

(5.11)

∫
Jn

ζ(xr, t)
2 dt = kn

q∑
j=1

wjζ(xr, tnj)
2,

where wj =
∫ 1

0
`j(τ) dτ , and ζ(x, tnj) is given by (5.7).

The following are the discrete cost functionals for the initial and boundary
conditions

(5.12) C0[θ] =
Vol(Ω)

R

M∑
m=1

R∑
r=1

(um(0, xr; θ)− um0(xr))
2

(5.13) C∂Ωs [θ] =
Vol(∂Ωs)

R

M∑
m=1

R∑
r′=1

N∑
n=1

(um(tn, xr′)− ums(xr′))2.

where xr′ are Sobol points on the boundary ∂Ωs. In case we use other than
Dirichlet boundary conditions, this term is modified accordingly. The deep
learning approximation of the problem is characterized by the minimization
of the sum of the cost functionals with respect to model parameters θ,

(5.14) θ? ← min
θ∈Θ

(CΩ + C0 +
∑
s

C∂Ωs
)[θ].

5.4 Applications

In this section we will apply our Runge–Kutta ANN schemes to heat diffusion
and wave propagation initial value problems.

We will apply four alternative time–sampling approaches: three based on
collocation Runge–Kutta methods and, for comparison, a uniform time–sa-
mpling scheme. Specifically, we employ the following schemes:

• Gauss: (c1, c2, c3) =
(
0.5−

√
15/10, 0.5, 0.5 +

√
15/10

)
.

• Lobatto IIIA: (c1, c2, c3) = (0, 0.5, 1).
• Radau IIA: (c1, c2, c3) =

(
(4−

√
6)/10, (4 +

√
6)/10, 1

)
.

• Uniform Sampling.

The auxiliary modes for these collocation schemes are chosen as follows:

• Gauss and Lobatto IIIA: (c̃0, c̃1, c̃2, c̃3) = (0, 0.25, 0.5, 1),
• Radau IIA: (c̃0, c̃1, c̃2, c̃3) =

(
0, (4−

√
6)/10, (4 +

√
6)/10, 1

)
.
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Notice that, in the case of Radau IIA and Lobatto IIIA methods, the points
0 = c̃0 < c̃1 < c̃2 < c̃3 = 1 include the collocation points c1, c2, c3. To ensure
a fair comparison, we use four times the value of n for the uniform sampling
case compared to the Runge–Kutta collocation schemes with q = 3.

In both of our applications, we utilized artificial neural networks as de-
scribed earlier with four hidden layers, each consisting of 20 nodes. The train-
ing process employed the Adam optimizer with a learning rate of 3 · 10−4.
The models were trained for 20000 epochs for the heat equation and 100000
epochs for the wave equation. For the time discretization, we used 40 nodes,
while the spatial grid was generated using Sobol’s sequences with 256 points
per epoch. These hyperparameters were carefully selected to balance compu-
tational efficiency with the accuracy of the neural network approximations of
the solutions.

5.4.1 Heat Equation

We consider an initial value diffusion problem on Ω ∈ (0, 1)2 subject to Neu-
mann boundary conditions:

ut − k(uxx + uyy) = 0, t ∈ [0, 1], (x, y) ∈ Ω, k = 0.02,(5.15)

u(x, y, 0) =
(

0.5 + 0.5 cos
(

10π
√

(x− 0.6)2 + (y − 0.7)2
))

χD(x, y),(5.16)

∂u

∂n
= 0, on ∂Ω × (0, 1),(5.17)

where χD is the characteristic function of the disk D,

D := {(x, y) ∈ R2 : (x− 0.6)2 + (y − 0.7)2 < 0.01}.

Note that the initial value is nonzero inside the disk D and zero outside D.
Fig. 5.1 shows the absolute errors at the final time t = 1 comparing the

different schemes.
As is well known, the total heat, in the system remains conserved, i.e.,∫

Ω

u(x, t) dx =

∫
Ω

u(x, 0) dx .

The conservation arises form the Neumann boundary conditions, which implies
that there is no heat flow across the boundaries. In Fig. 5.2, we compare the
various schemes with respect to heat conservation.

5.4.2 Heat Equation with a Discontinuous Initial Value

We replace the initial value from the previous test case with a discontinuous
one. Specifically, we consider

(5.18) u(x, y, 0) = χD(x, y),
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Fig. 5.1 Absolute misfit across various schemes

Fig. 5.2 Heat conservation (plot of H(t) =
∫
Ω u(x, t) dx) across various schemes.

the characteristic function of the disk D,

D := {(x, y) ∈ R2 : (x− 0.6)2 + (y − 0.7)2 < 0.01}.

Fig. 5.3 shows the absolute errors where comparing the collocation schemes.
The heat equation exhibits a notable smoothing property, which is not al-
ways maintained by various time discretization methods; see, e.g., [35], [49].
The smoothing behavior of time discretizations is a quite subtle topic, as it
can influence the performance of methods when both diffusion and transport
phenomena are present, particularly in the context of nonlinear PDEs and
Navier–Stokes equations; see [10]. Although smoothing eventually occurs pri-
marily due to the diffusion induced by the Quasi-Monte Carlo method used
for spatial discretization, it is worth noting, as shown in Fig. 5.5, that the be-
havior of various discretization methods aligns with the known predictions of
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Fig. 5.3 Absolute misfit across various iterative schemes

Fig. 5.4 Heat conservation across various iterative schemes.

Fig. 5.5 Smoothing effect for the heat equation. As expected, Gauss and Lobatto IIIA
methods have oscillating behavior close to initial times for discontinuous data. The full
smoothing effect of Radau IIA methods is evident.
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the corresponding Runge–Kutta schemes. In Fig. 5.4, we compare the various
schemes with respect to heat conservation.

5.4.3 Wave Equation

As a third example, we consider an initial value wave propagation problem on
Ω := (0, 1)2 with homogeneous Dirichlet boundary conditions:

utt − c2(uxx + uyy) = 0, t ∈ [0, 1], (x, y) ∈ Ω, c = 0.5,(5.19)

u(x, y, 0) =
(

0.5 + 0.5 cos
(

4π
√

(x− 0.3)2 + (y − 0.5)2
))

χD(x, y),(5.20)

ut(x, y, 0) = 0, (x, y) ∈ Ω,(5.21)

u = 0, on ∂Ω × (0, 1)(5.22)

where χD is the characteristic function of the disk D,

D := {(x, y) ∈ R2 : (x− 0.3)2 + (y − 0.5)2 6 0.252}.

As in the previous application, the support of the initial field is a closed disk.
To reformulate this as a system of first-order equations, we introduce an

auxiliary variable v, representing the velocity, v := ut. The corresponding
system of first-order equations is given as follows:

(5.23)

(
u
v

)
t

+

(
0 −I
−c2∆ 0

)(
u
v

)
=

(
0
0

)
,

where I stands for the identity operator.
For each sampling approach, Fig. 5.6 illustrates the absolute difference

between the solution estimate at time t = 1 and the corresponding estimate
delivered using the method of separation of variables, with 8 terms retained
in the summation. The total energy of the system is given by

Fig. 5.6 Absolute misfit for the various iterative schemes
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(5.24)
1

2
‖ut(t, ·)‖2 +

1

2
c2 ‖∇u(t, ·)‖2

with ‖ · ‖ the L2(Ω)-norm.
Since the total energy is conserved over time, Fig. 5.7 presents a compar-

ison of the system’s energy at each time step for the schemes under evalua-
tion. While all methods exhibit some diffusion due to the Quasi-Monte Carlo
method used for spatial discretization, it is evident that the Gauss and Lobatto
IIIA methods perform as expected. These methods stand out as the optimal
choice when energy conservation and high accuracy are priorities. Interestingly,
the full sampling method shows the highest level of diffusive behavior.

Fig. 5.7 Energy conservation across the various schemes. Gauss and Lobatto methods have
superior conservation properties.
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