{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "dedicated-elements",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn import linear_model\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "medieval-cricket",
"metadata": {},
"source": [
"#### Ελάχιστες ημερήσιες θερμοκρασίες που παρατηρήθηκαν στη Μελβούρνη από 01-01-1981 μέχρι 31-12-1990"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "interior-candidate",
"metadata": {},
"outputs": [],
"source": [
"dataset = pd.read_csv('min_temp.csv', header=0, infer_datetime_format=True, parse_dates=[0], index_col=[0])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "optional-parameter",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Temp | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-01 | \n",
" 20.7 | \n",
"
\n",
" \n",
" 1981-01-02 | \n",
" 17.9 | \n",
"
\n",
" \n",
" 1981-01-03 | \n",
" 18.8 | \n",
"
\n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-27 | \n",
" 14.0 | \n",
"
\n",
" \n",
" 1990-12-28 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-29 | \n",
" 13.5 | \n",
"
\n",
" \n",
" 1990-12-30 | \n",
" 15.7 | \n",
"
\n",
" \n",
" 1990-12-31 | \n",
" 13.0 | \n",
"
\n",
" \n",
"
\n",
"
3650 rows × 1 columns
\n",
"
"
],
"text/plain": [
" Temp\n",
"Date \n",
"1981-01-01 20.7\n",
"1981-01-02 17.9\n",
"1981-01-03 18.8\n",
"1981-01-04 14.6\n",
"1981-01-05 15.8\n",
"... ...\n",
"1990-12-27 14.0\n",
"1990-12-28 13.6\n",
"1990-12-29 13.5\n",
"1990-12-30 15.7\n",
"1990-12-31 13.0\n",
"\n",
"[3650 rows x 1 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "fossil-giant",
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset.rename(columns={'Temp':'Y_t'})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "foreign-explorer",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(-5.0, 30.0)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAHECAYAAACjlWK/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADe/klEQVR4nOydd/wcRf3/X3Ofmt57SINAIIQaeuhFIKICAmJDvyBi7/4iWFBBg2IBG4ogKqCIICihJvSe0AIJgZAQSEJ6b592t78/7uZ2dnZmd7bd7t7n/eTBI5/b29udnZ32nndjlmWBIAiCIAiCIAiCyAaFtAtAEARBEARBEARB2JCQRhAEQRAEQRAEkSFISCMIgiAIgiAIgsgQJKQRBEEQBEEQBEFkCBLSCIIgCIIgCIIgMgQJaQRBEARBEARBEBnCWEhjjLUyxp5njL3CGFvAGPth5fh4xthzjLG3GGO3McaakysuQRAEQRAEQRBEfRNEk9YO4ATLsvYHcACAUxljhwO4CsCvLMvaA8AmABfGXkqCIAiCIAiCIIhugrGQZpXZXvnYVPnfAnACgH9Xjv8VwIfiLCBBEARBEARBEER3IpBPGmOsgTH2MoC1AB4CsATAZsuyuiqnrAAwKtYSEgRBEARBEARBdCMag5xsWVYRwAGMsf4A/gNgkulvGWMXA7gYAHr16nXwpEnGPyUIgiAIgiAIgqgrXnjhhfWWZQ1RfRdISONYlrWZMfYIgCMA9GeMNVa0aaMBrNT85k8A/gQAU6dOtebNmxfm1gRBEARBEARBELmHMfaO7rsg0R2HVDRoYIz1AHAygNcBPALgw5XTLgBwd+iSEgRBEARBEARBdHOCaNJGAPgrY6wBZeHuX5Zl3cMYWwjgn4yxKwC8BOCGBMpJEARBEARBEATRLTAW0izLmg/gQMXxpQAOjbNQBEEQBEEQBEEQ3ZVQPmkEQRAEQRAEQRBJ0tnZiRUrVqCtrS3tokSitbUVo0ePRlNTk/FvSEgjCIIgCIIgCCJzrFixAn369MG4cePAGEu7OKGwLAsbNmzAihUrMH78eOPfBcqTRhAEQRAEQRAEUQva2towaNCg3ApoAMAYw6BBgwJrA0lIIwiCIAiCIAgik+RZQOOEeQYS0giCIAiCIAiCIDIECWkEQRAEQRAEQRASlmVh2rRpuO+++6rHbr/9dpx66qmuczdv3ozf//73sd2bhDSCIAiCIAiCIAgJxhiuu+46fP3rX0dbWxu2b9+OSy+9FL/73e9c58YtpFF0R4IgCIIgCIIgMs0P/7cAC9/bGus19xnZFz84Y7LnOfvuuy/OOOMMXHXVVdixYwc++clPYvfdd3edN2PGDCxZsgQHHHAATj75ZPz85z+PVDYS0giCIAiCIAiCIDT84Ac/wEEHHYTm5mbMmzdPec7MmTPx2muv4eWXX47lniSkEQRBEARBEASRafw0XknSq1cvnHfeeejduzdaWlpqck/ySSMIgiAIgiAIgvCgUCigUKid6ERCGkEQBEEQBEEQRAT69OmDbdu2xXY9EtIIgiAIgiAIgiAiMGjQIBx11FHYd9998a1vfSvy9cgnjSAIgiAIgiAIwoPLL7/c95xbb701tvuRJo0gCIIgCIIgCCJDkCaNIAiCIAiCIAjCgA0bNuDEE090HZ8zZw4GDRoU231ISCMIgiAIgiAIgjBg0KBBseVC84LMHQmCIAiCIAiCyCSWZaVdhMiEeQYS0giCIAiCIAiCyBytra3YsGFDrgU1y7KwYcMGtLa2BvodmTsSBEEQBEEQBJE5Ro8ejRUrVmDdunVpFyUSra2tGD16dKDfkJBGEARBEARBEETmaGpqwvjx49MuRiqQuSNBEARBEARBEESGICGNIAiCIAiCIAgiQ5CQRhAEQRAEQRAEkSFISCMIgiAIgiAIgsgQJKQRBEEQBEEQBEFkCBLSCIIgCIIgCIIgMgQJaQRBEARBEARBEBmChDSCIAiCIAiCIIgMQUIaQRAEQRAEQRBEhiAhjSAIgiAIgiAIIkOQkEYQBEEQBEEQBJEhSEgjCIIgCIIgCILIECSkEQRBEARBEARBZAgS0giCIAiCIAiCIDIECWlEYmxv78IvH3oTXcVS2kUhCIIgCIIgiNxAQhqRGD+/fxGunbMY/33lvbSLQhAEQRAEQRC5gYQ0IjF2dhQBAF1FK+WSEARBEARBEER+ICGNSAwSzQiCIAiCIAgiOCSkEYlhcSmNpVoMgiAIgiAIgsgVJKQRiWFVdGkkoxEEQRAEQRCEOSSkEYnDGIlpBEEQBEEQBGEKCWlEcpBTGkEQBEEQBEEEhoQ0IjHIJY0gCIIgCIIggkNCGpE4ZO1IEARBEARBEOaQkEYkhlUJ70hCGkEQBEEQBEGYQ0IakRi2uSNJaQRBEARBEARhirGQxhjbjTH2CGNsIWNsAWPsK5XjlzPGVjLGXq78f3pyxSWyytptbVi9pc1xzKLAIQRBEARBEAQRmMYA53YB+IZlWS8yxvoAeIEx9lDlu19ZlnV1/MUj8sKhV84BACybOb16rKpJI0UaQRAEQRAEQRhjLKRZlrUKwKrK39sYY68DGJVUwQiCIAiCIAiCILojoXzSGGPjABwI4LnKoS8yxuYzxm5kjA2Iq3Bpscel9+LcPz7jOPbpvzyPcTNmpVSifGIHDiFVGkEQBEEQBEGYElhIY4z1BnAHgK9alrUVwB8A7A7gAJQ1bb/Q/O5ixtg8xti8devWhS9xDegqWXj+7Y2OY4+8ke0yZxHKk0YQBEEQBEEQwQkkpDHGmlAW0G6xLOtOALAsa41lWUXLskoArgdwqOq3lmX9ybKsqZZlTR0yZEjUcteEdzfsTLsI+YYChxAEQRAEQRBEYIJEd2QAbgDwumVZvxSOjxBOOxPAa/EVL11ueHJp2kXINRYoTxpBEARBEARBBCVIdMejAHwCwKuMsZcrxy4FcD5j7ACU9SbLAHw2xvKlCvlSxQPlSSMIgiAIgiAIc4JEd3wSaveie+MrDlFPUJ40giAIgiAIgghOqOiOBGECF9JIIUkQBEEQBEEQ5pCQRiRG1Sct5XIQRD2weWcHtuzqTLsYBEEQBEHUgCA+aQQRCtKkEUR0DvjRQwCAZTOnp1wSgiAIgiCShjRpHpBwEQ3bJ40qkiAIgiAIgiBMISHNA4pKGI1qMmuqRoIgCKIOKJYsjJsxC9c/Til6CIJIFhLSiMi8vHxz2kUgCIIgiMTp6CoBAK5+8I2US0IQRL1DQhoRmWtmv6k8Xo3uWMOyEARBEASRbTqLJXz1ny9hybrtaReFIDILCWkekJleVCrRHakiCYIgCIKo8PLyzbjr5ffw7X/PT7soBJFZSEgjEoOSWRMEQRD1CO09RoMsbQjCHxLSPKDBwwydpqwaOKR2RSEIgiCIxLBAu49xYNEuLkH4QkKaB7RTFg9UjwRBEEQ9YGuAaGKLA1ofEIQeEtKIxKCdMoIgCKIeCStcbGvrRLFEc6NtaUNSGkHoICGNSAzKk0YQBEEQZYolC1MufxCX/efVtIuSOhb5QxCELySkeUBRCaNBZiEEQRAEUaazWM6xdudLK1MuSfpw3z5aHRCEHhLSiMj4DrI0ChMEQRB1QByGijQl2tBeOEHoISGNSAyyZiAIgiDqCe5rHWZeq1qX0KRYXSCQpQ1B6CEhzQMaOqJRncxoRiIIgiByyovvbsL1jy8FEE2TZpv40ZxIPusE4U9j2gXINDR4xAJFeSQIgiDyylm/fxoA8JljJgjasOALBNKk2dCygCD8IU0akRg0CBMEQRB1RYR5rRTBVLLeqGoVqTIIQgsJaR6QSYIZqkF25eZdWLVlF4B4HK0JgiAIIs/YJn60tqDozwThD5k7Eolw1MyH0y4CQRAEQcSKFWHb0RZMCA7JqwShhzRpRPKQKs0Xy7LId48gCCLjRBG0LJLSqtBsRxD+kJDmAe3wxEOUncfuwvt+/Tj2+u79aReDIAiC8CBSdEeS0apQ9GeC8IeENCIGaJCNyptrtqOjWEq7GEQ35Cv/fAnTr30i7WIQRC4Iqg371UNvYt8fPABACBxCgglt3RKEAeST5gENo/FAVnwEkV3ufvm9tItAELkh6HR2zZzFrt+SjAYhmTVBEDpIk+YBDaT+vLNhB2a/vibQb7bs6sQ3/vUKtrd3JVQqgiAIgoifKJuOFILfhkLwE4Q/JKQF5JrZi1EqkWqI8+V/vOR7jjyp/eHRJbjjxRX469PLkilUnfD0kvW4/7XVaReDIAiCiEixZEVKhF2vUE1E48V3N+Hul1emXQwiIUhIC8ivZr+JJeu2p12MXCGLtLSDZsZHr38Ol9z8QtrFIAiCICpU56+Av+voKlHgEIGoAmtnsYTb5r7b7TfNz/r90/jKP19OuxhEQpBPmgc8yeKi1VsdxwsFGmI5oYZHSmLpy+urtvqfRBAEQdSWkDJBR7EkBA6JsTw5JarAev0TS/Gz+98AA8O5h+wWW7kIIkuQJk1i2fodrmOn/toZ+ayr2L13boIi5//in0jW1bOrs5h2EQgC67e3Y8vOzrSLQRCZwQ7+EWwC6yyWBPmOJr+oq6j12zoAAFvbaHwi6hfSpAms3dqG465+tPpZNwZ3Uqj0KmGcqLl5Au0m6qGqIbLA1CtmAwCWzZyeckkIIhvYZnpm5zc1MHQWLXR0lWjuE7AiahUp/yrRHSBNmsAmacdYN3aQkGZjMlC6fdLKkLkjQWSHp5esT7sIBJF5ggoHjYXyMktcN9DMh8haRQrCQnQHSEgTMDW/6+rmjqoiYTRpQXciuyMFqhyixjz+JglpBBE3jQ3lsbxT8Emj8d0malXUa00ecuVsXPTXeWkXg0gZEtIETHdkOrtIkxYELpTd9NTbOO2aJ4TojvU6vIbnqJkP47+vvOeYuH750JvpFYjoNmwj3w6C8CXoxmRzQ3mZ1d5VQok2KKtEyTcnUq91uW5be+ActET9QUKagKuza3p/J2nSqpgNtOWTLv/fQry+aiuFIfZg5eZduOzOVx3Hrp2zOKXSEN2JbW2UXF7m2jmL8c/n3027GESGsM31zbA1aZbthxV/sXJItLrgdfm7R96iPkrULSSkCZgOFl3kk1YljLga1WG4O0D+ekStIV9bN7986E3MkDZNiO6NHK3YD+6T1uHQpNH4zgkfOKTM+u0d1EeJuoWENAHZTlwfOMTCqyu24PE31yVfqIxjMmHJpwTdieyO0BxO1Jq4zI8Iop4JGrCiSfBJix54vn6wLWposiMIHSSkCchjrm4M7iqVcMZvn8Qnb3w++ULVIRSVKTiUq4pIGgppTRDx01jxSSsnsy4fo6lPzDcX8vc0XBHdABLSBEwjLtHgEAx3CH4yd/SjJDWyT99EGwJEstTLuPbayi2BTdK6I2+t3Y6dHfH7Ia7b1o5VW3bFft2sENSnuqnBNnekyMY2UbsobSoR3QES0kIgL6C7MyZV4TJ3pMAhvsixaRav2Z5OQYhuQz2Mak8uXo/3/+ZJ/O2Zd9IuSqYplSyc9MvH8Nm/vxD7tQ+5cjaO+OnDsV83C4QR/psUIfjJxC/6Zi0tw4juAAlpAnKn1w2kNDjYhNnNss0caKLSIW8EUJMjkqYexrVlG3YAABat3pZySbINf9VPvUW58YISPJm1QkijqS+yT1odDFcE4QsJaQKmg2+RQvAHQq7XUokmKk+YXUcEQQSHxhZvyBw0HJYVfDODb0aWSmRFooQ0aQShpTHtAmSFj//5Oby7cafRuWTuaBOmKriQe9l/XoNlAR8/fGzMpco5ltvckSCSJ/+NLv9PUFuovoJhIXzAi5JlUdAsgehtj1ovUf+QJq1CZ7GE9q6i45hOGCMZzcakKuT6KgoHfvS/hfEWqE6gjQCi1tRTk6MlsDd19KprimVZgbWQvC1aluCHFXO58kixVM7LyM1BdXz+lhfwv1feq0WRuiUX3Pg8Hlq4Ju1iEBpISKvAmFt7Mbh3s/JcWkDbhDGbIVM+f1w+adTmiIShFtZ9oOEkPHbVOYWL5Rt34vL/LnC5Q3ClWcmy7DUGSWkolmU0NPgIafe+uhpf+sdL1c93vLAC98x/j9qwgj8+tgTPLNlgfL5lWXjszXX4zN/mJViq2rK1rRMz7piP7e3xR65NAxLSKhQYMxYeSMYIhlxdXVSB3jDgicXd06H/b88sw8rNu3D7vOV4ay0Ff6gldbERUA/PUAMofHk4vGrty/98CTc9vQzzV2zW/pb3MZLRgK6ivyZNtSb7xu2v4Iu3vkRdXcFP71uE869/1vj8eqzDvzy5DP+cuxw3PPF22kWJBfJJq1BgzCU86NovadJs5JoolSwUpEFXXvxR/fnzh0eXpF2EmrN+ezu+f/cC/O2Zd/DW2nLKgWUzp6dcKiKPkMuPNzQEh8MrcEixGhDL2fh49EJRk0Y+afZmbUNBrytok1xQiHipx2GgR3O5PW1t60y5JPFgrEljjO3GGHuEMbaQMbaAMfaVyvGBjLGHGGOLK/8OSK64ycEUEfV0g3Fd7DjHhYe/mQ6Kjkmo4ML75p0dKZeke1IPvbIenqGWqIbrrmIJc5dtTPS+xZKV+D2Sw9tX3SV+Vc0d7d92dxFt444OvL5qKwBvTVpbZ6lWReqW1OOGeZ/WJgDA9rbuZ+7YBeAblmXtA+BwAF9gjO0DYAaAOZZlTQQwp/I5dzDGjBssyRg2clWYCGBFGncJBYXK7nIdzhu5oJ7qnZIFh+faOYtxznXP4IV3khOifvvwWzjnumfw/Nv5EtQsiBEa1efojlsOTVr8ZcsT0699Arc89y4Ab5+0ts6yJq25kTxzkqAehbSezQ0AgO0d3UxIsyxrlWVZL1b+3gbgdQCjAHwQwF8rp/0VwIdiLmNNKDC3FkinMavHhh0XJv5mVH+ECj5VU/tIh3qo9aSbTrFkVX1p8oxXPb2xpuwLum5be2L3f7Pib7p6a1ti90iCcoTGMrJo4efnZ1lCjtBuvomwaov93psa/IW0lgYS0vzwsvDqLJaUG+j1ONU2V9pKsVgfDxeq5TPGxgE4EMBzAIZZlrWq8tVqAMPiKVptKQcOcR4THX1FSJNmI9ePqmO4QvBTBRIKuJ8GtY50qCcz7qQ0FWf9/inscdl9yVy8hngJFHYzSE6QyLOIoneDKP9bcPmklSlZdq13d02aiOzDLkLRMM3xGr4nXnYfzv+TO6AI3xCtp/bINbNd8oI+pwQW0hhjvQHcAeCrlmVtFb+zyrO8sqkwxi5mjM1jjM1bt25dqMImCYN6B1/V8OtpMRMVd+RGd8eQFwSkKQlOd6gxPldT8yCyyisrtqRdhFjw6mO17H55nEuruc6kha3uUZjgk0Zznxsvn7Q8to+08Gtbzyt8QLV+lDmGb/bWSxTxQEIaY6wJZQHtFsuy7qwcXsMYG1H5fgSAtarfWpb1J8uyplqWNXXIkCFRypwIjDGFuaN6wqKB1iaMlqyrTtTQSTJuUM+0i1BzxChoBBEGWtRFx8/nKg7yGt0wjHDLxzVLWFDk9fmT4LE31+GEqx9Fp8KMmBRp5piMfDPumI8rZy2sfrY1afVTw/yZ6mWdGSS6IwNwA4DXLcv6pfDVfwFcUPn7AgB3x1e82lFg7gGYzB2Do9q9cAlytJDyZFtbF5Zt2Jl2MWpOVeNKzSMSTy5ej5/e+3rg39VTt0xryfHc0g24/L8LUrq7OSavun6WbfEhBg5xfedjOmZZ9tqB6tbmtZVbsXT9DmzY7o7qW09jUtKYbG7+c+5yXC/kD6vH9siroTuaOx4F4BMATmCMvVz5/3QAMwGczBhbDOCkyufcoRtYVQIZ+VTZyKaMJnVjmjScsOlOk1U3etRE+PgNz+GPjy8N/Lt6SHCc9hOc96dncdPTy1IuhT/eGsfkazHPi0K/sVgOCmKbO1paU0lCXSdegkfPloYES5M/wqwR/DYW8ohVZ5o042TWlmU9Cf3YemI8xUkP2dkXKL9s1cKFTGps5KoIrEmTqv2e+e9h6tiBGN6vNaYSEnmBN4so5o73vroKB+zWHyP794ipVN0HudrzvJlST+Y7SeApotXAJI9fOm9Tadli0TtCo9eGL+9SqvVGd0dVI17tg+rQSZi+ZGvS6qcueTV0S5+0ekbV4TuLFh59wx3kpE7efSy4fdL0KmZexQ5tm/BnV7GEL976Es794zMxlpDIC7wpRBHSPn/Lizj7D0/HU6Buhlztd760Mp2CRCBvi/60MPGtqsWyLW/a27ILhPo7XaQ8UZNWj9H0kmDl5l14fdVWV/tYLYTuJ99lJ2H6UrUO66g9Vn3S6sTc0ViTVvcoGukvHnxDKY3T4KBHqUmr/Msqf+tMIvnhVVt2JVI2Ih+EHVu5hlvMwUOYI0/y29s6UyoJkQUSDRyS3KVrhjaZtdfT1d+aOBGOmvkwAOCeL01zHJ+zaE31b1qGOQln7hh/OdKGP1MdpLMEQJq0KipNmk5dSpo0PSo7YL545nWsE9LytqtaS7pD3fB2EnYTpB4nnDRp8AiNTeQcL01aDbU9WeqzW9s6fU18vVwdtCH4edTakiVoLqhvuVBUiVynnV3llff4wb1854ktu7rXJlOYebPa1+MuTI3YsqvT1SfrTYlCQlqFIOsR8kmzCVIXotmHfVC8Fj+U1yGDiEJUc0fqldGQqz2Pfl3UBszwTGZd+TfJcThrbWtrWyf2u/xB/OyBNzzP8zJ3rNab1tyxPvNSxYWqvcntlG+cNxSY5zzx2sot2P+HD+Lul/Nnsh2WMGNfKcd7Bmu3tmH/Hz6I3z+6JO2iJAoJaRWCtNF6k9SjINeEMiF45V8+CL+5ZrvyApZ9ItGNCaupps2TaMi1l2fH/BwXvSZ4+qR1w260ZWdZ6/K/V97zPE8MHOL+zlsrQT5pwbGFiHKFdVYsdRoLzHOeWLhqKwDgicXrEy1flrBCmPdV22MOF10rNpfdYh5auMZxvJRz7aAMCWkVgixIyNxRj9cE71fF3cGkj9ATdXFYb63nleWbMW7GLKzZGs3Hbu3WNoybMQsvL9/sfaJUgXm0diRB3QzP6I78j25k7mhHm/QvkE4bptOk8fMt1N8YFSdekbTtsOplSaShwLzfVTes6CiBQ/K4acDdZhqliSorY0pckJBWIYj5BWnSbFQJwN0nlf9RVrFwrB4TKxLmhEl30d5VxKf/8nw5Eliddcu/VvJtRd0NfvKt9Y7r6ZDrv5BHKa1C2jvDeRYWa+GnkrWWxed/37dmeZzDhTHXnGgLGrJ/NmGj6jLyoU7R3NFAc9SdajmM8iDHw1Q1/oE8T+XZhFMFCWkVNu5oNz43zw07buSFndrc0UOlLpxOwi8hI048ryzfjD8+5rQ/X7RqGx55Yx2+/e/5dauJjTrXmGoJ3tvchivuWVgNnkALyfrFRIhM1G+Mt8nk7hAI/qR+1WLBFrTk+rGkf6vHKwfK5o7O+xE2SiFNqmuuSbMsWi/IhNkYyrOPJH//bk1afbULEtIqPKLIh6Yjz0le48a1a+hRNX4b8/UU+OrNNdtwz3xv/wZCQtF2xIn4g797Cj+9b5Hj+z6t5SwiG7a3193mSdTHsTUiZlqClZt34c9Pvo1XV24BkE9zR07aY0jW26JJ8eKswrbOIq57bEl1kV1tkxmpqCDtxa/E4iMtWr0VTy/ZAEAKHJLjvpUUaksK/m/F3LGy9rJgeWqO6m3Drq2ziD8+tkQbGRsIGzhEveGQB8QgMiIZGVJig/KkhUDsJ6WSlWuzoLhRTbr2xKSoJ0d0x/w6scqc8qvHAQDv329kLNert4FHheoRS5aFl5dvRt9W76FqW3tXMoXKAGHnz5IFNCiip/rR0lTeuyNNWniy3l1rHTjk5w+8gRuefBsj+/fAB/aPZ0xMAr/FvXe92QIE59RfP+H4bZ4DNSSNkbmjoEkz0wbHULAMcM2cxfjDo0swsFczzpm6m/IcnWZx7rKN2uvmOchGsWT7J4rUm4BOmrQQiJ3hn3OXp1iS9HGZdnic6xs4pL76FhEDlgV86HdP4YRfPKb8XjQfovbjxCTflWqh09LY4Pu7rFLLNrB6Sxveq0QYyxteCxkeYCbO9//Ohh0AgJZG55IjK13W1ux5n2d5nOOvYRNqPYd9K2m6ihZekYIbcaslxhje2bADa7eW3VK6m7nj9rbyJuTOjqL+JE11nHPdM9qfVBUOlfa4bP0ObNhu7vqTJjxZtWzuWG8+aaRJC8FNggN+EF+2ekQeJ3koY8c5lX/9+gwfdOtRMbmro4j2riL692xOuyiZRTXn+k3EopBRbztoUZMKm1hle5sn57cj1qLkh/90DgBg2czpru/K7y5/9ffCOxuxvaKVjlPbs7kyL/Tv0VS+dsaqRsxl5kX5vapPsk3z1L8tCYFDVI+/eksbhvVtyaXpWRz8/ME38L9X3sO9Xz66ekysymN//qjjeNTxLU+Y+BWHCxzibI/HXf0oAPWYliVWb2lzRPoUqZd3ziFNWkS664Bq4+wRF/1tnvZMv7qSc6LUEx/47ZM44EcPpV2MTKMSsvwmHrHN1NvgbG9uhOsPcn2qqkdnYgrkU0jLiqCejVJ4oCnge5vtdA9xvn5+O5drQEYqyh47/Auk16RZnt97+aS9tnILDv/pHNz6/Lv+ha1T5q/YDABYL2hytHUt5Jyrd0olyw5s43FemLFP94vtGXYfeGX5ZkdfaSw4xZh6axckpEUkh+uYmmPqLJ2VBVYSLF673f8kD+q3ZrzxG3DFPC/dtY50mMxVah/S/Gu00x6Xs75OMClenFXIr1U1X4vx2nHgJ2DZ54kCp/Qd16R5aNp0PmlL1pXnh+eW6v2H6h3V5pCX5kj8StamcNIeB+JgwqX34q/PvAPAe9MyiCaN16sucMjOjuwKaXwt9UwlII+88ZPxoTcwJKRFJI+7zXFitBA07DZ5DgdLREfpOO6TC0d0fM5KpLgonPiLRzHjjvkAoi/03ZFXFQKZ4nfc1j+PGm1Vnd0z/z2MmzEL29rcptje18p/e9KhezTHK4/x9evMCbOyMWcLWP7n2YKmuoK8zB39/GVUP73+8aWY8J1ZPiXLP6XquGMf070PLvCO6t8Dk0f2rUb5rXe8hVbzvlRNC6Go87zhKnqdjdskpEVEtYGzZWcnTvjFo1i0emvtC1RjTLoDn5h8dynrq28Zsa2tEyf+4tG0i5EJvEzvtL8RzR3jL1LNWbJuRzUYUdXcMbRPmnOXlF/vqbfW4/RrnkBHV8nTD1C3O50HRAHzd4+Uc+u9u3FnoGtEybSSFeFDh658SUUdtNNARPOzTApeGyYLXV2/9J/fxBxr5mW78t7XI7XFvFAsuevGy7S0ZFno09qIaXsMxi6vgBrdhCDrJz7G66I7Zln5IPch+bHtYGLZfYYgkJAWEVVjfuKtdVi6bgd+M+etFEpUW0wmtWLRRx1Sobogz1Hfenv9DnzvrtdC5857bulGLFm3w//EbjBJq9AJaX99ehkeWLBa0qTVsGA5wPZpKzNr/ioAwIw752Phqq1YvaVNWb/yBJ53TBMVy5juTP/k3tfx92ffwX2vrhJ+G+xeWSTWRU418IHzcFbqyfRdc+EACD5NOXzStFo4fTnqPT9rUWHuqBuDypq08mZMa1MD2rtKjvrJSruKm7hSZ8gb57LVRB6WYLzMchupNwuI7qEjThCVSZAc1rS7U01AaepflHiJ4uOzf5+HN9dsx8cOH4NJw/sG/n1jQ56eNllU7UO1LrEsCz/47wIAwF1fOApAZVetvsbmyJNNSdpxrB73MXHxi1KXZVRFZhoBIcy1VPzp8aXBLpwBTOoizs30qk+a5JOVlSZmau4oOqXJcz9/Ni/tj06TaGJaXLIsFHI1OwZDFflSa+5YOb/AgNamcsqQ9q4SejQ3OM6rF20Kx2vjLMimGj+3mMM1F0dX5nrbyyBNWoUzQibYVFkEWYodoTzy0rub8OqKLZ7nmPQHbsZgYu+fV8JOBk0N1AU5Sp80ZWAL+297YmIuE65iycJtc9+thurNK2F9w7wiowFlh2svc8c870iKNVaomnsGe5560SSq0D2Z2NSSmL1Mg0jVGttHx/+di7kZldfS1G7JMgjxb3DfeoWvE8RAELoxyKr49xUYQ4+m8hza1ln/Jo/e7cO8gfBTdQmhc4WsnU+nFIlBK8QKZx04KtTv+rQ2uY7l0GpPyZm/fxpn/PZJz3NMxoWuqm7d+zyd6j2LlEoWnly8PrJgKSdiFMlBNSSOUpMm/i28APld/P2ZZfh/d7yKm599J5nCZRzdAseRANwj7UEeJzvVI5vmwPK71uurzH2Msy7f6dpGUkOO/Q6c95379sZM+BNVozv6nif0GY1PmtfmiK95mUcB6nnTABB80oRjukcuVubfAkM19+i6nCRhjoK3Ji34dTqL5X91CaGzjN4SRK2tziskpHFCvlDVIruekzLLGPmkGWrSdOZZWeSmp5fh4zc8Vw0H61Vmr3C2jR6aNPGSHcUSVm3ZFbSYmWfJuu0+CTpVQoQl/F3+VxWCf/32DgDA1rbshhP2IqrVtM7/RQx1rar6YsnC6i1tgaMhZgqFRiiqZvC0a56I9PssYWbuGH0g3rC9HZt3drjuyy9950sr8c1/vxL5PlGp1ofBRqJOk+Yn6JVKepN+OwiC+VjY3lXE8oDBcLIMr1dRQNDVx7INO9FRLOGVFVswfnAvAMA7G3YKv6tP3D6dlvJvoDyOv71e7e9uCecAqjD22a1BuWSufKDZLXooSEirEHY6Kiq2HLqKXNjIgbRRA7oMt2Xy1LeCRIrju1UqvDRpsrnsET992PieeeDxN9fhxF88hrteXglAPbiqhDTxUHWSYe4dNG5vn1tTjoimYSXLQntXEV2lknS8/G9BIdgC5Xo8/Kdz8P/ueDXcjVNEtbiQo1uaIra9oCazWV7kmBLH9HXwFbNxwI8eckV3FFn4XvpRkA1ltLJXmaWe3/2aiCU8vcsnzWAFIk+j3/73fBz9s0cyoYn0YldHUblOkuHniOeaLLi5X7fqHvW2BJMFMfGRi9J3185ZjOOvflR5HT628bWZPEfmQdCpjilSWetN40yBQyqEFajkjgEA367kOaq3AUKFbpEnwu2e6zFwSFS8BIhCPUbDEHh1Zdnf8c01+kTfSj81oU5UyWFl/5K8+4aGxQKw13fvdx/nPmdQ98k8mLr4IbYHO3BIsAcTT2/rCiik5bQOk/JJq5o7KqrRZAGfNNU+YfDidO4Mfr6c5eiO3mOS1+3lxecji9YCKGvU5IAZWcGyLOz9/fvxkUN2w8yz9/M8VxVV1i+vHCD29fTbUdJ4CSRy33p26Qb9dSrn8s2nPAppugT0OSh6IEiTViHshOTlaFzPi8PJ378f37r9FWWPkKuky9DcMQ8DA8e9E6rGsqzQo0YdNx8Athloz0p0LtUuuzqYiPtvlbkjX/x5aSuzTFRtjG5HUYxCpzqj3nYig4TgX7VlF8bNmIWHFq5x1E3WtRVBqfUrduc08g+zXkuMNWmWvl/6mfWXLEtIhB2cPIbg53P/bfPKuR87iyWMm6FOzF2NOOjQpKkX4iKq6K0ZaFKJID+W2HdcZn8e1+G/+9ptLwMAGjSRSrNM1QdUetJ62+wnIa1CWIHKa9zMQTsPzY6OIm5/YYWZJs3D3E/1uzyYiZpGcyz7MIRrCPUs5APAzsrCl+8ChzF39MqT1qWxt88LOp8y8wuoD5eEyc20zvOCOnCIubnj/Eo029vmLpd29ANq4QKdXXv0GwDJ9BXehpU+phkQPvyCflTPE85xp7bwFii89utMhvoMVFNg2isa6OaK73WHgUZapUnzgtfdgve2YuoVs7FeCCBSb1PoNXMW46PXP1v97JgL5ao10Mpyf22XJi1SKWuDrow5nr6UkJBWIWxnVpk7ctq66mf39eoH3sCdL64wOleukS6Pyaujq4Sn3loPwD+0cZZw57lRn2fBu414DSi59aUyhGsnejbrra6VQhrckzhj7hD8/LdZ16S1dRZx4U1zsUzj5B3eJ019nG+GlCwoZ7p6mOTEOisodtpNfh9lZz7r6QtMiieesnzjTvzfTXNDaxRlk1Px/WRB+LBNgP0LY89Tkk+aT/QRHjYe0G9EBjF3zMNmZnslLH5LY3mp6VXkqpm6YnPExNzxt4+8hfXb26vriXqkWLLw9BLbjNFrI8k7CI3zs9vcMQOd0g/Nxko1SihjeHjRGnzvrtdqXLB4ISGtQhLmjvVkIvPbR97C1//ljsKl6sy3zV3u+Gybgajr6mN/fs7xfQ7mHuP2Up6YPYQ0j4E0D/UQBb6ryidwVU2s2OSOaKnSpKkukBdN2hOL12POorX48T0LHcejzpNe+ZrK17eU52TBRygMt819V+mH4aXF8cTRtPJZJzqCanSunPU6Hl60Fo+8sTbafRUbcfy93Pjk25i/YnOk64elKl75adIsSyloAsI856HB1v3W9qryWFhr+mWW19NVTVqjuc+cGIDFr04Bd116bfrVG16BQ7yQ12258kmzPD/a8z4D/u+mefh7zlPwdJ/W7EeECGoyg3s3Y/32Duw7sm/EQmUfVV/+rrRzYRrd0VbXZ3tRDZgLUCVL7Swvfq+9R7Ai5Y5qKPjKVpFK4F+ztc11TDzLEYJYvn7OfNJ0bSpqCH4Zh09aHZk7itEoHXUWQJOm2wCIIN/lFvGZ49owUgWC4PX8o8omxbKZ0+O5WQBs/xb/83Rjtl+/KQkbdvKQpPKrcv9e/Zss0y5vxBl0DHGTyGQsUgVwqbdNFR3OMcr+e0d7V6C2VLIsPLhgtXCt2IqYOG5NWiVQXQplSQLSpFUI6/fBB5Sl67ZXk53uPqQ3AKChkH71rtnahhfe2ZTY9c0GXW879J4Vn6Q85Ulzm5pozFeg16Q9/dZ6Rw4hmaxrgKJih4LXP6eq5lQRrUTzNH65anjhjDeopExL/AKHAOr6zdMEbULV3NFo2q6MQZA2AwLeM+t1GDSZddTn4eOlqk1mQXNbbRtGRbHNqUT8AoeIAp57vWESgl8yZwtS5JRo73KaO3qVVZXw3E5n5P87jjMvabbH/qhYwtJK7EZL1m1X1nVTgzoVRmeXhYv//oJwrSy3qjK68dzLvSaPpC9FZIQouYgA4IRfPFZNdsobSRD1c1Kc/MvHcPYfnk61DH5zcM+Mhg/2wjXF6nzSLPUiZEd7Fz765+dw0V/nae+hEl5yYStuiC2U6wM7qEx8lIFDmHvQLuXE3NFGdt72XqB0FkvVjSEVXgEMAOfOvkgeJmg/nKHkK+0rqDZMs0tdDxiJq4pnXrFpp+fG0uotbs23330zIaQFKILOd9o2I9bcQ9iw0+3flizg1UrwGhldPWW5bb707mYAQFMD16T5l1XlZ+UdfKz8Jvgwv6O9ftxM/HBuWNp/z1um3phvaeQb4s7jQ/u2OD5nt0XZ2I/uLC0X7PPwDCaQkFYhtE+aoiVsa+ssf5eByYdH70kKM0dr750Ne+Cwd7Ezj3EIfvVzc0HeyxRUJVtkYUETF7Lpj1c9OXAIaeV/GZjb7CEngUN02M+jLv9P7n0dp13zBN7ZoA444iek6c0dg5Uz65iYkqkQ6yHwOjjjdRg0cAjnJ/cuwkm/fEz7m8N/Okd53O7jfIy323QWZAzTMoh9Rido8WcUowwCZa2/JYxXIryNzn59Dc747ZN4oGJ65twogPI3Gag+Jfe9ugrfubNsgmxSVv58KnNHryBs/NqtlVQuTk1aVmvHG1PBWxcJs8DU1+AaTb42PXHSUABA7xan51MeNup4CXWBQzIxsMQACWkVwu62y4tmy7KwdF150ZQFTVrSBPHzGN6vVfm97ZMUU6FqgHEIfljKdmCiuVVp0m56epnRffMAN1X0Mkf0i+4oOuLLZ+YlcEjYZv9iZZd64w61ZkMfOMTeaVSdk4cJOgiFqqbW/7lEk9kofi3Z94lRl88kYuD67XpNmg5+VaW5Ywbam+n7ErVhujnAAvDQwjWYesVsx3FHnjSfauYRCm8Wgh7o+mUGqk/JknXbXce8/aTcX/IxvNNDk8arkgsg3UGTxtedzo0kp8Cm2myTfQN535OrPqttCnD3Vfe8X15Y1MtmIwlpFeKK7lgsWba5Y720Eg9MnpAPvhOH9lF+L0dfy7gLEQDzMpb9ENy1ZJIDTXXOgwvWmN04B7jrRbGAU/Qh8dDnbnkRAM+T5jyX982s+6RxxGKOmzELDy6M9q51w489MVvKDvxZwTchr6gW0FfdvyjYRTw0aX5WElle5Jji9QzjZszCll2doa+pChySJkGKwE/1GlZefHeT69iDC9doQ/DLl+KCxsOL7GiarhD8vDwp1N+e370P51zn7UahFPg9iqrSjJhYI8nm8rs6RSEtH2O/jN8r7Szy4BhqTZru5y1NTqslfeTt9PukKXL7t80d8/MMXpCQViGuXESmkQy7E/ZCW7d7W/6Xn7Z5ZyfGzZiFx99cl3zhQmLaXMTd06CoFEDOCajMwve2YtyMWXhbk2crq4iLjq/+8yV8/M/Pu85RCWmqRcmyDTvdC2nJnDKr+E3IfmPTmb9/GtfOWew67rf4tZANLUbSbK2Yn7+2Uu+/J8PApEWPtBmX83qLo/jrtpX9zy79z6s48/dPeZ5rBw5xf6eKK/WTe1/HKb/Sm1XGTTBzR65J05+jG3M6isXqb7e1dWL3S+/FnNfXuAQaHnBD1CDdL0Tfc9zPrOix0tFVwlyN35MXXgtnOxCKfY7JRjevOX7u9vZkXTxqgd9TV4U04URxTCqnV3HDQ+3zuUHnipKHZaxuc0IVOCTLfpt+kJBWJaS5o/TyO4UkH3luGDr++NgS5wGDRxR9YHzOBGCH7f3T40uDFa6GyAtn3aNZUA94Jm1DtROpEtJ4kvHZETUvtaZqOg7grpffw2pFuH2lkKa5ns5kIw9JXwH9CGRS+l8+9CaunOXMs9bl6WxfboNGi6AcVJ/cn6obPyUL8zWBGHyv6TCrdX7nV29ZH/l15WOOc+yzvNrArc+9i5fe3Yzp1z6hPcfL3FF17E+PL8Wba9zmcklhbu4otAVdQmpYWu39TiF36qsrt6BYsvDHx5e62i/PISmuJ352/xvKa15w4/N4ZFG0/HVZQqyKHT65ZhsKzNHXgXKQkbwvvfzWB2f85kksXrMNTyy2E3eL/eiKWa8rF1xjB/asnFv5TaV5ufRoOag/3da/KrdeHp5HBwlpFcIuRK6ds9gRjUlcGOW5Yej46X1Ok6EggUN02BN42FLVHtmcyitIw6LV7h18k0dVOabXU4J0k0SlP3vAvTDRnc83TKpmQJV/sypk7OzownfunF8NNBSV6594G4C9i9+ucbYXN018smPkBt3YsVPY1Dj/0DHVv59cvB43PPm263zxMo5J3nU/fwE4y+iKF6yvOE9e8J6BppJvnAiH8mbu6BvgynL6wZ47dXT1752CvxT3JR3Ys9nVftsVQpqORau34aK/6aMEZwmTev7h/+zNJq9IokDZlJ3PxXz8F9tTVsd+P/yqadmGnbjq/jfwzdtfsX9jULm7VYQ0fq7OJy3NPlkqWbj8vwvw+VteUPo1cnRFtE1BhWtmYIwJCwlpFaL05TN++2T1705h1ZPfZuGNOBh4OfRy/PLHVE1hciSluQd/ddkty8JX/vly9fPvH30LW3Z1OvKb6FD5pHV4TNpZssG+9bl3tVEHAWDW/FWYv2IzAO9ym5o7qs7N+rj892fewT+eX47fP7rE87ygmsDminM4X+jpsGA7WXveP9Ddk+Wttdtw+7zlruPyczAAd7+8Eq+ttDfQerfYqT4+fsNz+PE9Ts0j4PSZ0iWKLd8v440L5TL/+YmlWLtNlRDexAQivrLIObDENp2FqjQtgmVZjjaiu9ZfnlpW/dwgCGx808CCveF2/4LV+OH/FjiuoTJ3lBHrMC9+tyb1LPo6bt7pvYFVKIhac/N71AO7Op1mnfJQrqoHO08a/41aH5Xm3Pnqyi246elluPfV1fj0X+b6nq+zcpADqeQVEtIqxGUS5WdiVA8EbfB+58uajzwgtxbLKu/g3PniCs+wyT+7/w384O7XjBZJqhaZ9R16AOgqlnDpf17F2X94RnvOF259EZsqE3DQR9KdrgtEYhKkJQ3sSMF84RrPdZsrOYnaO32ENMuus8kj+2LScHVgHzk8c5qc/KvH8a1/z3cdV427X/nny/jIn56tftbtb3RV+q28SeSpScuBueNba7fjilmv44u3vmT8m+QWM3qftCx0T9Nx1YK/Jm3R6m0OQUMcf3YK/lLimmOVlF+OC2emGgBdOoCsUA3uEXCw39Hh7V8mCqcqTVpeMXkE2apGfm7VBifPV1cNHJJBTZqfBszl1iB9rzR3zMSIHI7szL4pE9c8Ue/mjkDwDmxVBwLv3+VqcJVWFpt3deIb/3oF/33lPcdx1TNt2tlp1DZUGwdeiyjTtABJw4voZ6oin298fc0PdJq0bNSKnmUbdnp+39ZZxCvLNxtfr7mxAUCX0tzxuaUbqn+XLKuq0f3C8Xtgyqh+OPpnj7h+05ChyCu2qaaF597eiMPGDwRjzEizpRtf/vzk25h53yKULKBHk61te1moc3nselaoR69ypglf6G9VRGHUm2cL85fP9YMIV3aeLP9FVxrY+gQf4dsSzajVFdAl7QY4hLTKwtqyLM9xKejGTT1p0kSWb9zl+X1B8Emz82NlY5MkCi8bjPc7fYS0rQoz+kYupFWaaMnHygkop1Lo09qIoX3UKZTSxhXVudoM6mMtTkJahbh220Wzm+WbvBdfeSVoagExL5OSHKrS5NZywY3PVwfNddvsJKaqR+oqlYweVdUi8yDIBtaMBfyBrg5cQlqwYmSWb/97vitgzMYdHdihiWLW4mHueJ6gWRI1aQXGtPnksliP/33lPXzlny/jZx/eD+dO3c09Jik3ONRPsr7SXzfuaMfI/j0AlDUbX/rHS8Jvnb+55OYXI5Q+fbRCWkL3y7rfcZAhyC+6o4zD3LFD1KR53KPyr6z9LZUsvLdlF0YP6OnIj5j1XJCcoHPDq4K5sgrVus3hkxbsdplg5eZdOPePeisUjjy+y31r/Tb3JmlzgzO6oyMdi+Na9ucTf/EYGgoMS35yun/hYyC6tZBbk5aHdZOOjCvJa0dcG1Hiju5DC9c4fCLyhLwbKBK0vftZgGZ9AlchF1Xc1RKdvVVmWJ1dVuiBKA+595LOd6erA3kgztvArNOEqiJ6HvTjh/DWWrVTNfc70AUO4ViwqjuqjQWW+VQFIis3l3fYl64r+z2a9KcOjY8eX+CKl1ghbbAF7XdZMK/xDHfu4UNr/x1fWaqatITHhvCYPqy/T5qMUpNmeDfZrPaDv3sK0656BC+8s8lxPEvabo46TVq8/aLA3BpNXVe1LEs7BmSJLT5+eBw/80bVvMHNHflP+VJFrjOdn1eadBVLRnELxKjR8rE8QkJazMjRmOTJPi/scdl92u/Cmzuqv7dz6OSoJ3mUtUMQzA7/6RwM7t3s+L7TUJMW8LaZWBgCYTRpwc7XTRh5CxySFLb/h/d5lmVr/hsKzLUrfdLew3D2QaMzWY+NlUUp30xyKdIUv/nnXHfAEcCZp5E/64Ydzl3owGNThupMZZanN3cU/jYMwR8EEzPLNDBdxJW1z+W/Tc3LG4RVlriZ56lJq9xDDojDNUtvrtnmOJ5Vv1tOtXQxv+aGgvst6G7xl6eWYc/v3qcMpJMlws7jcvAZFY2STxoXeuTxLUPDV5U9LrsPF/zFnUtV508nPlOu1pYSJKRViGuM+9btTqf2rA+eItfMXoxxM2b5nqdr8FNG9fM836+byN9nRegIiiyoT58ywvV92DEjD4NN0u9Nl0hYN9Fkv8bKxD1UmAhpVXNHwbeDM3lkX/RpbUx9Aa2isRIpoZq4NMJbLgibRNrkrtnfgI+FILXIAOz7gwcMz3VuxIlLa8bS31Cx/Vf9O2G1rZlq0lTmjj7Pu3TddoybMQtL1qkj5DZKmrOsrzMWrtqKs//wdOzXLTD3uFWyLGWDuvvllQCAlZu8/dzSxrQvyOet3+7vA96kMXeUNzizEjhE5onF633XiZZi4t/VUcS4GbNw63PvxlHEmkJCWgXTXbFT9hlm/0bxk4WrnLlismiGoONXs980Ok/exeMcNKa/8vhTb23AM0v0jvZeiU6zildJOyWTir8+847jc1fRCr2ozEMVBd1pDloXDyxYrTwumm58767XMilc1AJe67+e492fLVjVOmtUaNLsYA/Zo7Gy2OCaBvlVB1mz8iHaEoQ0mcDWA4HOzg7OtAP+52/X+EXK8PexZms7DrlyNt6S8h+lXV9Vaw+/wCEQxzczxH5VjWgr9D0VW9u867Wpwbl0a8jISu70a57AXS+VhSF5/H/hnU2xv+eyJs15H3Hcd4wD3MIg5jKkxbsbg1tp8fWoncxaLaSlOXVGtcRRKQXWby/7Hf/m4cURSpYOFDikgumk3iJE/yowpt3Vr56TIyFNh7zY1YVW90pjMPP+Rejbqm5u1Z+5TJayW3der90rlxlQ8Y2JQZP292eWoUdz9rpwcHPYYNf/2f3uBNeAc6L5+7PvYNoegyvXr5dp2ZBKt/GLjHbrc++ireK3UGBuIQ2o9M0MVh/XpJkkRPfD1qTpw/T7jfMyWWhynqbRBuaOccKb1gMLVmPdtnas27ZOum+6FWZ6d8tCtZJ00518XBd5McqmJN+k8LtHrVm4aiu+etvLOHriYFx1/yLX93G/ZgZ3fWvdKhIqQ9wkWb4GabGlS1uQdn+MAi960A2nrJKR/Zf0MR3jxNNMBsasDJ5RiKOBD+ndov1ONDdy3DeLq8MKnk75PsUuWZbZLpii6Rw2YVD17+/dvQDfvP0V/+vUgE07OnD1A2+gWLIi74SFRbfoyW4rclLroeKfc5fjrpfLKSMaG5hrrGKV/8T66+gq4ar7F2kjS9YKbu7Fw8zL/dHU/OvhRWsw5/W1ACrmjhrnpDwvWlQ1oQ0covlbed0ADZZvuOn8SdOuXWMTM1iBLQUKBYYrz9zXdb8obUq+d2NWVGkVfvPwW8rjcc/pjLnfgm4esPfL025t3oQV3o+eONj3HFmTVtRp0kKVIB3k6uJtTKxHHnE7j6vxbPXsFJG7+ulThqvPE04zMWXMk7mjDtNBw2vONpnP8xyBR8TvWS2UQ/bX6n614Ht3v4bfPvIWHntzrb34MCzXgwvV5otBcU805c/3vboK723Oth9C2hQYA5NmA8a4v5Bdr7fNW44/PLoE185J12ykau6oCRxiOu7+303zqibqxZKFb9/hTpStur4fWd5gApwLm/c278Ks+asqx83LHUjIqLwOrZCWcnUFeV9hcph98IBRruM+BhfeZZDK29yY/lJOa2boOCf4dX3rWaFJ47eZ8/pavLNhR+U6ZgGV0iZs8Xq3+FvV8HHzvlfLcy6vixff3ew4zySKYnIENS13nm/ngLOPfefOVwEE21jKCsY9mzF2I2NsLWPsNeHY5YyxlYyxlyv/1yaRQgK41b3+vzFZCGTdodcE0/7qtbO4aPVWg0AGzhPk681fsTkzkZm8nsXkje/o8A6PrqOoiGCQhUmnrbNcrq5icE3aAwvWxFIG2SSNV9VdL7+Hc67zzztTD5j6CMmoojsC5bYs1mp7xTzSz6Q3abjmoBo4RB47Qgy7ut1/IEQI/gz0SVPO+M2T+MKt5bxvjuiONXyI1IVaU02aJfikCW3Mq981FNyBPsSgPXHQnKAmzbIsPLJoLdZta8dL724y+o1uLRDmiZsK+mdjzH0vsauu2tKG469+tFKm8GWoJWH7nRywTLU+5WP8jU+9DcuyMqvZ5ijTOPitIyulFyOjpj1fRSGIQ8tNAH4L4G/S8V9ZlnV1bCVKCVPHSYUfqiekSSuzfOMujB3YS/M7pwqeI0/cH/jtU+jXowmv/OAUo/Ikwba2TmzZ1ek5iPnt1kSZm1V517KGHcGttqza7BTg3xAC3Ly3JfuatDh8ML8sJGAOQgNz50lT+XvY36U7rvFFr84nTWdmbllWqN3UegscIpZPTDegE5aivm/+a9WikCF9oZbf3iQiquqUL9zyouMcEcaYax3w7sad2gBcJsjVmKQm7cGFa/DZv79Q/bxs5nTleeJz6zVpwV90Q4EBmj1Nru2X77Fmqz0X8LqqulVk3GQnbOm6pOdqLDBXf+vf004HtGTddmzaqY4ImXZ/9EIbzbGCbcppH8vzMty4Z1uW9TiAjQmWJVXC7GqZmTuGKU38RNkV3bLLLLmiX23oFwBltrb538e0LGFp6yxWgymoOOv3T2PaVY/4DmJ7Deuj/S7KDmoWkkr6kVYRL/3Pq47PG4XFZy402jEU8Y3V4RZ+jLnryE5AbB+zqgueULeJjQbZJ83Q3LGzaGGbwTgjs80n2l7eUM0HluXUgvt143aPxMA9mhoc47lXLsy0R7S2ziJ2BbBs4It8sb/MXWYvjVSmt7ImbeGqrfibFPU3CPL7S1JIW7s1uPWKbngIM/WJVffzD++HIwS/bHdsx3J7+t0jS7SFSru96egslrCjvSv0Wm2DFIJfHs+v/+RU9Gy2A9+d9MvHtX04TR9c1XzjeX7lX7425GUXx5o8mjly4ujZX2SMza+YQw6I4XqpoFv8fu2kPfHIN4+rfhZftklQkKzsSAQph9xBD/vJHKPf+fpi6bSTDNjR3oVv/1vtD1JLjpz5MCZ9737t94vXlkNHe5nnqHb3wjBpuFvQy3qaAgsZMF1SkIcAPnGU0LKsUNdR5RsCyuOd+D6rWtKUq9NegFSENMPAId+581VMufzBwPcTNQkmZD3QiKp0oimfCadd84T2u7auIvZT1LPu+mlW18E/fggX/W0eABN/YqtqVi1uBIhJquUxekd7V+yLRPkeLQkKaaavRjwvzscVXQMKjGHqOHuZWZ5rZXNH783grHbNT97wPCb/4IHQ5eOJzjlyPTCYb67lxyOt/IMF723B/j98EP95aYWdCF5QpaW9qRiFqD37DwB2B3AAgFUAfqE7kTF2MWNsHmNs3rp163SnpYYusmCvlgb0amlQnmcy8GZF8RGkGGEHiSgTkSpaXBomVaL2BQB++L8FRgm+RRjU/j0c0/o9Z+puLmdg1U/TXjDLZcjiJJiFOpJJokxhx5tCwS3I8shpKu1K2juT/O7VfD/Sc+sm5TteXJFYmUSy2AdEVOWzIAmXEZ5Bvr6Yi055forLQlkI8MKy7A1d3bmyOd3WBKw/5GqU86algVUDzUWhAHz1pD3t+8C9uaUbA5lPG0ybZ5aWc8nGtWaU17Rl1z6z98J/mtW6klm0qmxB8sSb66vPLdZjLixpNETq2ZZlrbEsq2hZVgnA9QAO9Tj3T5ZlTbUsa+qQIUOi3DYRXP5Qlc/uXRr7b9mEQX3dbDTyQFG7Qt7D19zRY/BU5ZPLgkbmL08tU3/hUTTG4vFFZACmjOrnOJYVod8L3Xu+8Ka51ShLtSaLvqFJDA1B83lxdHnSwJxNPWDgzsSQF1zy+FYP+SlrjWU5R9w4x19bqNYIaRkZ1yaP7Ot7jsrc0fG99CxJCCxyfSUbOET+7P+y4jR3FClI/n1MYQGgKx/f9M1IU9MSl2DUKfmvlzePDctQDWMfS1ECEfTxLVjgsWVKwhgmBg7J82wQqWczxkYIH88E8Jru3KyjM3d07dII55ks/LIy+QTTpIVVpfmVQT945nmnQyaIWYHvtQwnoCyhM4mbs2gt/vH8uymUSG3u2NZZxMf+/Cxer4RgT5s4FnNhneILGhNdJklpvA+nrUm78K9l8zQLwOyFa/DV215OtTxZhr+q3z3yFv7wKPfVcbcTWZP23NsbcdFf52Lxmm2Y9eqqWMqS9U0mvzn9Ezc8VzUr050qb5QkMbelmVNUXCvNXrgGX6v0PUcJdIFDIpZTNe7IFjdem8FA9v26kyqdyu9Yx6z5q/CDu19Lva5Mojtalt0G7nr5PbxUSScgBsLmm3Z5XGYaR3dkjP0DwHEABjPGVgD4AYDjGGMHoNyulgH4bPxFrA26xY08EIuN1uSFp7WofvzNdY7cUIF80kLec2e7t/O1LqhBefBQHM/w/odXHek0g5wg2lV5UC1pNAdZwo7umJ33p+qr81dswVNvbcD3734Nt19yZO0LZUiDIkqXjg07OtC/Z1OIuzD1Aog5F1a2hUGIWySAZaHqT5Qlstg9f/7AGwCAzx23u7J8T721Hrc8Z2+i/PGxpQC8A4SYwm+nmmcZkluYBsWvm23a2YkHF5ZThphGMExCyaWLaJcE8vOIQijve7867wCzIA8RyylXOVMc1CezLp943WNLcMye2bPm4iQ1djCdtYSCf85dDgD4zul7J1MYDb975C30aGrwP1Fg3jubqvnfRLpKJYwe0AMrNu3Cik3Zj+6sw1hIsyzrfMXhG2IsS6ocPG4ATtp7GGa/7szZxBjD4F4t1c/iAGCiSUtrI+KTUrLkYMk6w93z78++4/n9pp1623y1j0RWpm43XotmxlgsgSpUphx8d8jvHd3/2iqMHdQLe4/wN9+JE8vK5gJV1VetlIVJ+d3qStHAGIoB+sKSdTsCl0W5ScLc4dHtOssGpuZzLY2FWISNekFVa5/6y1zlucP6tka/X+WG+veVjUGDl2NnRxduefZdXDhtfGDTWTkUehKmt3I9JhlWXr6yyauKM0+a47oKKc1tbeL926eXbIhYimQJs+5pamAu80YZnbWEyPmH7oZ/PL+8+rnW7jp8Iykozy51B54vWcCgXs0OAS0rm4tBSN/bNCO0NDbgzxdMRZ/WstzKm2ahohX57UcPBOAUuoyiO2ZE0AimSattmcsR5LzJyiTO6fJIjlg2d4weOARQTMbK0Nnu311y84ue0dfiRnzajL0qAOr3Ue3LGR+4PXK5xncPTXtlOp+0jNeZ3E++O722O8JZGPe9+mGQPhp0Z1slk1Q1aZr7pl9bZXg5rn7gTVx57+ueZp66OpQ38JIwd5RvneRiWr60PgGyv5VR3PO4OnCI/z280uykTlKaNAO3Evn7tM0dozaXjFu2GkFCmgRvonLgEB4kpGRZOHfqaAzp04LOknuhPqBnE848cFT1c9YayaYdHXh7vfdOe60X2a+u2Ow7eGetHju9CsS8F9amC7i9h/dx5e+pRl0yukI8lEoWXnp3k/H5Js8nR61MGpUpX9W/qqYlEe5v+BJrkT5ANXkzRRYiS/guC+jqUDzuZ36cBFnaqIjafHo0BxXS9FprXWCbrNQXL8f29rLVx86O4PnxuiSNRhLP5hKcalh/JtrrV1dsUZ7jZU2jY2Q/W5OrCsoij+26qhDb5ZWzXg9cjloR5lWatLGCz7qkfI7kXpFB44Mg9ZO2kBkHJKRJyK+UN9pqtnrLwlVn74dnv3Milm9027lacC76shPdsfzvcVc/iuOvfjTVssiULODNNdt9zkmmHnd2dGGLwcQhC5HemjTmaQpr8igfOWQ3DO3birZO531UPmlJr+FvePJtnPn7p/H0kvVG5/Nx0atctdaMevmFZEUrpCtHLQQMdY608r/iu8qaJk23ISCOF4WYzI+DsG57u+cYkTZB+l/QHFyh+n02pslqMfj47fUKdUUuSivbJLSq8jWTHE9dWjuDZv3kW+q54uw/PB34/v17NuMD+48sl0V6TpUmTRvdUThx5ebs+igFXetMHNrb7ESDwCHyuiVstOC4UAcOMS9TVtbfUSAhzQfeSLhjYrFklX2ONAunUuX7KhlrI1sMcrak0a79Ol5SOyLH/fxR7P8j/+S2cvHk3VKRsi+Ph5BmUK7JldD7bV2SJi3ANeJifiWa2bpt7Ubn13pgvGjaeN9zlJNTxvqmjlqkD9DN3S5zx5S1jzK6BaPYBLnJei0557pncOW99bFbH7Tm1FrrMrphPCuLKT4P8fFCFrhMqMXCVq7HWmoMav2uLNgmtPJzMoWflTZPWvxFS4Sg1XvLRYcZnVdg/vYPaZo7mgpfQcrkTuidl1ZgQ0KahP0K+WCNyr+2Js0Ly3IOGpmZfPKyItWQVDWuNRQ85Nt7mTuWo5VFK/DHDh0DANhrWB/HcVuTFunygWiv2O+b7ahbZlG+ABw9cXCkcvXr0eT41wulCVbl36wEDtFRi3etNndUBQ7hX2ZjstP1M4d/DGqvSQPgCkJVa7zGoCBtKqjQoazryiVU82HJAg788UOB7pEUvHgNVfcG/3NlXIvIBPqvHCgkWZ8057VV7SFRTZ5lCesv53dKk2ytJi0bY5YfQd+laSJzBv9hW75ULS1eTG8VRG6Ug/jkpAk4ICFNg9snrVxVfhtrJcuSzB3tv59ZsgHjZszCqi21V7VnOXAI4N/xxIFr3IxZ+Nfc5R5nx488cHZ6RIpjLLrTPt/5v/qc/R3hgtOQ+dsqz9riEUDAoTwWIgC+8M4mjJsxC8s37nScb1nA0D7RosbxhYqJz4zKFj9rpnu6YtRiolQKaYpZ3aqen3iRjNBVjTyeNAc02YuDrOzaqsoRZIwPupmultFqv7kUBqu6OWtbznidrcLLyoITNfm0XK5a+g6pIkkmHdWXr8Nc5o4aTZpqQ5Fp/s4aQYU008A05Tr0CRySormj7k4TL7tXyO8YLJLp0hCRjrMGCWkS8m4L/8QXeX6NtmSpF6wAcHMlRP28ZZsilzMoQbpaGhOp38Ak1/vVD4YL1RoWuXgdPj5pPlczvm+vlkYcMnZA9fO7G3fihKsfxZqtbcbXiEoQTdolN7/oeLrb55WF6ScWO30ULFiRF/p8l8wkCInXRJYVIU1HLbqj1tyRl0HyhcyKAKKrG3E86SiWAvtVxUFW2pUskHUVS/jo9c8Z/z5oeHd14JBAl0gNtyZNX/CSBXz27/Pwr3nODUNZgOKfLj5mAgBgcO9m7DMyWmoUk6i/SSFrJ/j9k9zc5XOFkZWGpbbmENd2WembKkyEfBHT6L87O7p851xZC37/a6sDlSUKus3IzqKFq+5fVP2san/1DAlpGuwd43Kj5Ymae/ns2luwHAuYLbs68Y1/vYKtbZ22P0cKA0SQ3fg0uoAutPyP/rcQb6zeBkuSiWpdh3L5vPOkeU8mQccYcXerWLKwdP0O/PuFFa7zkpqnq5q0RrMob2JdVYNPKFpV1HfI30GvkJEi0zYBlt+X1hynBsVUBg6BnaevGlU0Y9pH3bgmH/bSAidF2lWkE6TXbTcz8eYEFQDUzv6BLpEaspDWVbK0baxkWXhgwRp8+9/zsf/oftXj8iKS/37ScG66zgJp0m769CHKe4skqfFwRZJUadISu3uZqmbTpUlz5xK14B7by7ECHL+Mv5AxEVQIKRikMAKA7e1dviafsv/zD/+3MFBZomD61FE2JLL71vWQkKaBNwTepjfu7AAADBQSW6t/59zZuP6JpbjjxRX4y5PL7AVOCk3Fr1k/uMDeMUkjJ5nqlmu2tuHGp97GJ298LvUoQzJeA4WfT9rGHR2B7qUaV+WAIkB5cP/lQ29ia1vwMMde8J1004U5N70RzSvk6rKs6PmDuDZzUO9m33P5/ds6i/jlQ2+irbOYan8MQi1avs7ckdcNL4NtDlaDQhmgDRYofZGGJi2J/FhB0I1BQXfqgwapVPt/hmvFtZ6L+Lgu+qDr25j9d6HAsM+IsnZMt4HHr8lYMPPb4/Ya6jomv5NaKhdUQsTyjTvx5yfeTuyefE3lDgThHr9LluWqj66S0w3lubc31FRLFIQOD1cKFabjzPa2rsCBQ0SeW5psEnDTrl4PYfWDUNtkRTmCtwPeaE/aexj2GtYHXzh+d8/flScVu6HzDtfYwFLdhfbrABf//QX73ITLosJvdyTtKD1BNGlgLNadY5UjfnuneyC/77VVeG3lVmw1iOAZBFUodpH7X1vtCMCiSmoq/9JCfI7cw/v6+7bxMt309DJcO2cxWhoL2LcSQTOttbSx0JuSTxogv3smpFfIhpSmqxu5e6YhpGVF9pfHyqA79cF9ZNzHwjZhORBXreCKrlJJL16K9VIqWWhq4No3KQS/Yt43bY889LzXvQHgleWbja4XBrkGVBEvP3HD84mGtWdVoVk+rvBJK7nrp6tUcpy3ra0Ll9z8ApbNnJ5EcSOxK2Ci7fJmmj8n7TMMO9q98/55RRI+70/PJlpfqp6mGjeimDvmUbwjTZqGqu9Fpc0O7NWMB752DCYM8c5JIfukLdtQDpjQWGDVRuiXTDoRArTOdHzSfL6XTqj1Tr6JyUdcjOrfw/FZtYBuUwzkPPH1wlVbEymXql10dJVwyc0v4KV3N1ePVTVpsCcPl19LDIuvL5+wBwb3bgmUbJfXW3vAibAW6Koj6CI5TJAMXX+SD2dMoW20gPY6L0nS1qTpCBpWPmj7C5OwWEet31vV3JHZ5o66nF9itZQsoLEi2clzwwcPGAXAFjQYgJYm/z7at7UR155/IADbn42jmn/+NW851gc0ZTVBfv2qRXLcG4MyBcdmkY1KQOkqlZRlzmp/BIDFa7ZV/97ZEWxuMjV3HNy7JXCetFqiGmZUx4L6yIps2B7MiikLkJCmQTZ7MKUoqdU5jQ2FaoP7+QO1DXoBBDM36UwhCauf0OPeQUtXk+a3bomyuHhqxgmOz0pzR4WQwevo+bc3Rri7HtUzqd6b2r9QXjRHDxzy9VP2wrzvnmQcghhwmu+lYdYbhqCR28LUq0ozLfYx2dzxnQ07qvXXWSy5onfWCt2wIb9aE21r3Mg1unZbW+ymyGHoDGjuuHZr9IV/2J5W6z5aNeetdKL/vvIeLrjxeeW54jhXFDRp8pg4peKvJrYHE//eRmFc+/hhYx3fqcbdb/97Pt5/7ZO+1w2KfCeVuWzSb4mvw/wCggDAjnb33Fgsyj5p6fDuhp2uJPdrt7bh5F89Xv2smtu9kMf7P3zsoNDl81vvLquxgkHV/6No0sYO6hmlOKlAQpqGKKaJDyxw58fhA3hayG19Z0eXK2Ib5wd3L4jlntd9/GBjsw6/yTjtfHPy3T195Cwr1llLtbvVpjB3DGrLHhTlrpbioCpwiGpcjctkNUgOLFWe+bRM90ybdFIhmUWYopsyiOaOlYOVf/81bwVuenoZAOCKexbi6J89YpzsPFa0gUOcx0f274HPH+dtqs7RmZgFRX4Nh145B8f9/NFYrm2CrtkEtQK4f0F0353Q5o6R7xwMXjV8THlng37zYYeg8ShZVnWzSFxELvzR+6p/O3zSDDaWxH7sCo6hqdDVNYj6qxqPggoWHBPNjei/7EpmrZhFdnS4Tfo6S6Xau0iUrKp1CwCs3tKGY37+CH563yLHeYf+ZI7j805F+b2Qx3uv4T9onjSZ465+FG+t3eZ9UkiUmjTFeVHWgnuPiBZVNQ1ISJM4ZNxAAPbgEWbBozI5aCiYqaSTQr73Pt9/ALdVco3Jc/bjb64LdY/dBjrN9FqbCgH8btzHxEOuwbnW5o6S/OO10LEQb+RAVRuU/R50x+JEtTDQJafl8IlRpYmMy7JCzu1iglV+SQAy4zqkLUjg6Hohbq33SeOaR8tVlpcrfjBPVMzBtuyqvSmJ3tzRfczUDDQukx/VojBo0KAo2JsQzuNpWEqEFbdqvTfHxzg+pniN86IfWMmy0Kj4jUrQMhUWGj3aYS1jJ5iY+ofVbphusImBXERUPmnb2txCThrBJq6893Xs/f37qwIsXxc+vcQ7AMeujmD9012F+jr125A0We+u2pLMRoBqzaSa+4IGPvK7XtYhIU3iN+cfiHu/fDR6VEI2e83XF04bb3zdpkKh5hOOzOdvecHxecadr2LcjFnY/dJ7HcdNxs0Hv3aM69jvPupUszc3FownJGXnEQ65w5UbXVbLI4vWYtyMWZ7nzJq/SiiKswAvezhqW1a8i4ul67a7jqlMllQT0TE/ewSf1JjrBEW5q6WYT1SaNJFxM2aVo23FJGkHWVPzU3/7yFt49u3yZJn9wCHBrrsjoE8DoK5DZ75H57/l39g+NvJ3tUJ3z98+8pbrmOmC0Ou0vYb10X8Z4Dq1QKdtSWPBGl6TVmtzxzJBBfViyaqaJ3KB5YoP7YtWIfUDv6KqXfzrs0e4jollyIagXSbO9mNazyP6lc2VB/ZyRvIdM9BtvqYUIouW5wL9nOuexqm/flz7fRh4jlA5yBd/4kffUK9BggcOsevwp2dN8dak+Vwraz5pqqYWRdBKew0eBhLSJHo0N2CfkX3F+HTac+UBw4vGBoY0Y8tYloV7XzUzWzHRTOypWKzI+ap6NfsHD73giLKtvarjiSaF8mQd1QlYTkCq4u/PLqv+fcCPHsKqLWbRq+JeWLzw7ibXMdVEpDJ3fHfjztCaURnVAKcy++wUIpp6/TYuR+6wE8s9r6zyP6mGpJkKQHdvVQ4i+zf8HOb6Lm6unbMYH73+Wddxedz4xOFjXecExUuYmzzKaS5zyj7DtOemHQFT9z6C+qTFQdg71nxRFVK7XrLg8kmTE1YzaVNDRLWWcAppzl91eAhpUQIrqHBHd6y9kPZ/08bjN+cfiDMPHOU4ftXZ+xn1s66St5A2d9kmLFqdkBkfuFtJ+TNPJ3DXSyuV54cRwPmGzJ7Denu2Xb85N83gKqq3o1xzGLQ/XbMiTVodUe1QEex7RcTAIWkQ5NZBfHxE+K/69WjC5Wfsg/2EBJ86Dh0/CIB/Z3Rp0kKVMBjywvWhhW5fQxW/e2QJ5r3jFqzC8v33T3YdUw3kWxVmHnHy2sot+MKtLzrei2rAbK+UramhYEd3VLzguOYDk4lF5WNajeAaTzFqxi8ejD/wkK4Kq4FWFJo0XnG10KT98qE3lWZC8j2PnzREew1Tkyyv9iSboO0+VB/tN+12pXsfaSxU4goA8ucnluLvzyyL5Voq5PyoQX7XWHBq0uRLOP1h5U1H9zXFtiZ//7dn3tGWxSSn6M/uX4R75r/nex6gMHeMsf2Y7q81FBjO2H+kSyCTN4Z1FEulwPn+4kYORte3R5PyPDmwSBAYY57jl1+7DuM6EBeqMSJs4JDdNVHYcyijkZCmw5I6lIogO9+NafukBbh50B3gb71vL/zvi9Oqnwf0bMKnjhoPxpixo+pihTOqWGa5+FF3qeX6UO0+xrmp5LfD/5tKqGUVI/u7I9OJA1WtduyvvPd1zJq/Cis22c70qkGUm3c0NRQwZ9Ha8nmK68XmkxYocIig3VMcSxPTYvzmYbcpnwlnHTRK+50ymbVQpupusPAmxUAI8ne1wjUueIzJpsJJwWNWbPD6Ui5LpSgL39uK6x9favy7+LCFhf++Yi/IUzFLDXKuaEEh/fCKWa/jezEFtlLeu/JvUK12sWT7pPG5RB5X7P7ivraq/4kLZrk8XtoEE03D7x9dgi/e+pLveSridH320qSdOKmcxFs1rvzhYwfhmo8cYHyfrpKVWjRf2S+bP3GfVrWA2RlBUymO2ap7+Jo7BtjwjBulO4XK592gfkT/46MnDq7+LWu38wAJaRqqux4x1VDZT0nduFZu3qVVfcdFkAVU0MXzF47fA1NG91OaPfldik9Ov3tkies7pybNWf64l9Wq3cE41+7ThIFCZp8RfXGGR0Q5VcCDFwRNXa0nH3HBoKq39q6yTX1jA8OKTWUTUbUmrfbmjq+t3BLLPZMgaVHxBwqNLEftk+Zeqjp90irnSdq2uJi7bCPmLvNOJ6HKm6QjDk2aHKXX653xy5zx2ydx5b2vG907TsSq+fI/7AV5Gpq0IOtO5+ZcbctarApYwX5nWbZQ9WpljJH7FJPOF1GNYY0ePmleRAlRbkKcmjSvsdtLq3PalBHV/HMmdBUtZblr6Z9ZvVPlZbZq0jCImrQR/VoxZZS/RRK/dkHaGL/vK0c7TzTcNE8D0+iOJu1bXDPxNvbVkybikmPNIvxmCRLSNPB24LWjFmTgLFn66ebc657BV297OZKa25cAY1FYHx/+M3ER8KMP7uvzG/29rOpOsGKXP+KK1sTOPk4fIa/n5BsBF00bj8MnDHR9bxKuOS2U5o5dtiaNo85vE08ZTJorv/99r7n9MrOhR6sBnqbb3rXg5VPoCtMfE+dc9wzOue4Zz3NkPxKvfmbqq+O5cJSu73UuHz/SCNQBeEW+zLa5o1i+Whc1rD/Xys27FEKZpEkThnG3ZYj7mo7IkAHKUkzY5zBoMnQvvPprWLcLHapXW4sALC6fNL65pXk8MXrhbRcfgVH9e6hPVMCY3e6O2XMIRg9wBlbJsk+aasAyTfsjI66ZeDtK0+c7Ctld/aWMbQqlPyfIK9c1rO3tXVi5uaxtSHIHLMiV/Trq1LEDlMdVO+pnHzwaM06bpL2W1yJHHD/jNneUSXrh4lVaXt/fff8++OfF7ihfpqHDk8Kr7Kr5mgcwEXeCuUZNJK4JIWxbUPmppUkS5RDTYngJs7rojrYpY+Vfj8idaZg7yni1qTg0af+RLB68BTqj29WcpH1XVQQZXy3N37UgyhQstwW5GXktElVtTgy8FGSMW7+jHcs37sSarW1YG0PeNFnAjlOu8XqsIFZMoruFCp0lU5JrLvGdie/C702K5o5Njd5nD+nT4rgmA3Pd4OCxAzC8b6vRvVON7mgYgt9k0+uI3QdV/+bPlJV5PihmXpfdkGpQgZjerC4s+0f+ZO8URxkw2ruKaO8qoW+r2hk1mE+a9/e6S+l21MMGX/HyTYj6VuTrmWh6otzTczLyqfCsadLE4qpMSLiQJgqX/3j+Xfd14i+aJ3Ky5a1tnSmVJBn2G90P81c4zTnFhaHXWKb6jgm/533RkQNP8rHJglO211gTVqP19wsPxSduKKex2LKr0/GdVy4r3lEaCyxxEzQZy7KwQZGvE3CaPtaKIMoXh7ljjRtVMcK8L4/jLfLmmvC1e460v+zT0oht7V2OvhykOCf+4jHH52Uzpzs+R63TWmmGuTmgSUh6/zWLpSx3Z1cJaAlVvEAcJiSs9vJNBOAQrJt85v6ff3g/AJJSoWoFVuaOzx1ZPd+vXWctBH/Y6I4Th9rRx/3qMOvku/QJYkfi0Z8Th7njayu3Vv+OYu541u+fxn6XP6j9Psgut98Yzgd52SmVfxZ3MQBnh5HxNndMDvnaSU873kKa928bMzzIKFMBVNpxlkwrVm7ehUOunO04trOSTyyvO2wyrkUhnM8WZv51adIcgUMq5wS/bGJ4LULCLi7FhcuEwb0c33n1Tf6zxoba19DNz72LS25+seb31RHEj8lh7phEYbzurYnMaII8nsmLQ/69qj2IfXNbezBN5/WfnBro/KApGFxBtmKN7qiv6XGVvmbik+U3l1iWutydcUZBMcRvvhFNuJt81InyeCd+VN3Hr12bzMlJzZeqVhVWkyb2p6omLWzBUia7q7+U4X03ruiOJY26XSTKbuuC97Z6fr89gImL3yDMi/nkt0/AM985oXq8f89mPPyNY3HlmU4/tOMrUZpUePqQOMrhLFPcA4XR7mKEm3otHk12rx771nH4v6PGK79LyeWlcm/9IOpXp6ZCw8yzpgQuVxBUxfj9o29h3IxZaAuYWDRaOaI1apVZrLhBEvj6YiRMy/kvYPddvo7IQg4arzZlOr7Ki4BGYaF05ZnOtui1S8uL4rfQCssNT76NcTNmYVtbp+u7x96IJzdiHIwZ2DO09qbWTSpKUAx5HJf7I9OcB5TnB26SpsKrWEHN4cUca799eLHynO/e9Wo10bJ86zg1aV4jUmtTAY996zhcfc7+/tcxsP5RyWNdNcgZ6LICCrCO8Nvgkb9lYJ4b8vKtJ4/si9Ymd5CNNFCH4Hefd/8C/3y/TCWk5VRKIyFNQzVoRUwvtmRZvhNOkgPG2m1q0xcVfost/m2/nk0Y0c/p1DphSG+0aKIWqfBav3jlSYuqhXHvDrrPidPvzetKJvcZO6gXereo6zXuhcxtc9/Fnt+9z0izq5qw+W60346taf2Ol7QXcaMqxo1PLgMgmkQmT1SfLpVZ7MyzbaEiaHNmEN6R5fin+n353/JfaQXIEPGKCGcaFEIe/8SFUt8eTusBOdqjCPPQnMQBzxe2fnuH67u0wo3L8DYZpGmI9f/nJ5Zi3IxZWBODb5XRvUNGdwTMNWkNzL2Qbigw/O9L0/Cfzx+JoARdV3NzdAC48allynNuftY2T3flSYuhn+9fyaHqNweMHdQLPZv9vXJ81yyWOpl1LQKHyAR5XX4CuNzmCgXB11p1b+n8vYb1cQivmUtmHXJOFJ/TFtLyKaWRkKYh7uiOJpNmkgNGIMftGs7vXhGcvPKkxY5KSIt4Safpgf5qppOs7hpxazB+9L+F6OgqaX0BGCsn9r7wprnKCZsfWbjKW7tr2n+SHlxVfdwkT2LWUE3oPZttwT7Mo/Cf2BHK7Pdt+6SVP2dBkyY/4kXTxuOWiw4DYK5JcwlpQgdtbXJulJgEDkmq/fLrnvGbJ7Fk3XbHd+IzvCL5KdaS/Ub3gwX1AlmHeCrPCfjsUnci8yQoeSxw/ZCbgrxpwoV1VU0UWDkIxIFjBoS4b7DSRhWy4hDSDh5bjmLsHZjN/LlEwVOFBbWWNKjpZxww5vzXC0+fV8U1GJgQEEulsXVfQ+ybefBJM0F8Cr86zDokpOmoNI643m/J8t8VSNK5PNhOps8JMS7GvBYwXhN79IWPJX1y3yvqLWZ9yc5R4h1Zz+xGUcrzyvLNxue68t0pbvyZv83DnEVrQ9uMA+pJePp+I4zLGTcdXSV8965XsXZbm+CTmp8Bntf72EF22GVnGO9gz+KI7uhh7sivmsKmtAt5XNhnZF8ctUc5R6Fp6HC5/YoLF9nvz2sBoNMwbtkZj3aW33l7exd+M8dptpa+uFymUGAVfyDz3ySZU9EPO09a8Pv5mTvyzyXLcr0g8X6qWwcxYZP5y1Nv44nFtvlrUO2EK11NDPO/SfUGeQW+QpqmDXbVwCdNvi0fF0zGY7926DJ3ZOXxAAB6tbg1kKqrie8zTYFG1S7DRmAW5z0yd6xTrvrwfvjQASNxkCbcfFBkc0dlOFiDVc59r64KtOCu3j/ALOmn9YtzAeDVcbzy5cTd35TRHX0++zFpuJk/kKkgoDvPZJf6g797yugegP9zihOHamPB1NRK5c5zyNgBVVMY+35GlwsNv/7Di9bg5mffxeX/XVBdrOVpE27rrvLkPG0PdeL0oM/CpFb7wjsbMfv1Nfb3zPlHFjRprlxVwucZp+2N/aS2pUIehkWzNdmErdHDXvv5SiJuuV7ueHGFbxmCIi/m0rQ8/eyxE6p/c0uJIOaXabairlIJv3vkLezoCJ6mQDa1lU1huWZNnXNQ/F2wZZnfYv+H/1tYjU5aLoD4W39crgExNi7dnHb6lOE475DdjK/T7iOk3fLcO8o22NlVC5805z34kBHLvCZtohUYsL4S1XVw72b36YqbisUzMc1ObJhXXJePnUGrSnxMLnhSnrQ6Y/zgXvj1Rw70dgwP0MvKgUOcn2VMNGmfu+XFQAtu+37mPWvDDrePg0icndSrBp3mjs6bRh3gXCH4FedE3b31i7Rk8p3jPM3xpAZN3XXFcih90gzLozbHUBwzu1xoZG1RqSTa9ednYOcaI2dER3GHPvyzWADO/sMzDv8nObpjnIu3sMiLPvH9De/XitsvcechlJHHSlFDIu80G/mbSdUySLF4iopcijR90sQEuo0NXJMWQEhTrLfl51u0eitefHdTyBLq6Sxa+PkDb+DnD7wR+LfyBoFOs2ZpIj1Xz1OtOTQ/mHHapMCbL1G7aVhNmth3eL/Rlf33HzsYfTTphFQcMKY/RvXvgbMPGq38/s4XV2KHImpmLaI7yrUVp3WGe35iOH3KCIzq3wOfOnKc4nxvvDadkkbVqsJu/Il1XCBNWvclyDt3J4RUadKSm1iz4NSvwqvjVE2sEthbla+YxKLGYcLicZ7poK0rYewajAANW9Vmo5SHMdR8NFUJYvwZapmgOcprvOGCqRjQy72oERdBQRdzR+4+SMiB5i6cne+n/DkOM6iouIQ06ZlbGhvwl08f4nkNL580OeS+iQ+HfL3YFmmOTSBZk5beuxD9jAuMYcuuTt/owyIvLfcXvk799RM46/dPG1/ztZVbqmZgJoSpPr8ofqZBVHo0uwNE9eupFlguOXZ3z2A5KoKl43GfHXYzRtyc4Plch3lEtAxC39YmPDXjBBwwpn/12KHjBjrOUb1TPzPJKMibf0neQ/w8sn8PPDXjBIwd5A645Tf2pJEuhKP0Sav8G7jJKTVp+YSEtBpRKlmOwbHWOTvinLTjXLh67e7z+8haSCB+oVOpSYvx+nEEDtG9w8Tkb4Prqmz6zTVpmuMhrxcn/JZBu826be3Y6WEq1dZZdCXVjgvb5EWtPQuiSVs2czrGDe7lypMmUg0cUvmc1EZQkOu6Fy3uZ5aDFcnJfof2cWa3FQUxua+a7DzLxU/Cz1G+ZJqbcqIc21Bg2N7eFagffeovc13HdFVm8pxtnUW8/zdP4nM3v2BeiBD4bVLw9y6O40MqbU2MiMyFucG97XbY0tiAEzSpbIJuvgR5FxsVVjVhfecH9rKfp28lp2rP5gY8+50TQ11PhVgVl07fuxo0CHCmHuAsXrvddSxu5PXSqi1t6CyWYllfuKI7+vmw+dw0qz5pQcmTL7kfJKRFIEg7kAWNWmvS4pyza2XuyCmW3OkLYhfSVD5pMfZzr2uZDii6R1602nyXmtNZLGl3RHl5qmkoPK6jmrAjadIUx3RRJmNDcVNbkxaMQ66cjfdf+6T2+4/86VlXUu244Nou8XGizrn85179gykWn5xSyYoctfa2ucuNz3VHO3Pj1d/evOI09O/pNEcUBT05GMQAjYZDRK4XfjmvPhiULGxscFThryNfUzMKmYw1fIx64Z34zSMdZfGpdFGzwvvqjFMn4c0rTnO0K/7d3y881Pl77XWD1XGQ8fngK2a7On/YuXdQL7tf9a4IaYyxxObZAnPWWUdXCR/Yf6Tj/O/d9Rr+Nc98fAmFVF1vrd2O7931WujnvvsLR2GvYWV/d5PxLghB/SHjoFiy0FUsJbauDBt8JCuQkBaBIO+8JJkNqHbdkow0FKdQE2tnMug5XcWSO8JUxOeRzbeSNmvzekrjSVZT8a/7hLpXMfGy+/CdO1/VlMfzdg6KKnPHCNEdxftzdhk48UdZC7r8eWBVF7lhzGCXrt+h/e7lEEF/TPHSdoVGEthFZJ80lSz2zX+/gomX3RepCHJ4eS/8zB0B79yMfnmJ5ByQA3o142CP4FKdisUH/zzxsvvwqZvcWiNTxEeTnzMJ8+3nL7U1HrIpmYgjslrCKyMTgaNWazO/vQgebW/KqH7V3lQouNsc/84rB59IUK1B1KYRdhNONHdMyvfJFc1WqJqOYkkphPzvlfcSKQtHVVuzX18b+npNDQU0NapN+Pyagvz96IE9HZ/TMHc85VePYY/L7ot1BSa2A37dPPmXi5CQViOumPU65laifQHqxW1efNLiLKVXt+FzgUpbE9bkYsYd83HolbPdzyAdGDdjVqSBVMZrsWy6eaV75LbOcML9bT47iLoa9ttsMH0zyiph7qF0R7u/Jk00pQmKOuJVME3amq1tGDdjVrD7Bjrb51pM3DGM78rVK6k0aZVv+YSoGmPufHFl+ecRVoZBfmpi/qMSHOZ841g8f1lZCJHHYc8NFgAj+un9ato6i65FrdhnHn9znfwTY8T3LD9nEpq0oYL/0PfP2Mfx3Y8+OFkoi308Nk2a5jImbSOs6XJQ/ISXgb2acfcXjsIvz9u/ekydo7HynXHUX/MyhkF+qrCKcXGDqkHwE4p1HBT/Zs767egqobnRfbck/dL0WKGFhoYCq45hbk2a9zXlceKzx0xwfE4jcMiSdeVNzSBzxDdP2dPze/ExSZPWjenZ7M5DAZhNKDpN2t+fWYaPXv9sHMVzEKtPWqx50vzP6Sq6zR3DPs8/5y7HWoVPkMmiJkonlyfS3kIOE3Nzx9rYMPHSmNxPtTA3z5MWJzG2STBBk2b2m5dCRJqL823KO8RyPq+wePmkVbVrlXO82osqRPbyjTtx6JWzsXzjzoiltHGF4FecIwf/AIDdh/TG0D5lIUTOp+b1nvzeYankrhc/TfPnb3nBlffMD3EImbtsY+KmfXJ7203YkXeEv45pZ153FZMxqlbjpsm4t/9u/dGzudFzXOH9Sp4XdD8JqkkLWh9xzb3vbLD7uaPMiZk7Ok0pO4slNBYKNV+sx938GgrudA+cJoUQKiJ/K+dSM9Xeivzwfwtw2X/UVjlBCFJPI/v38Pw+rwKZChLSInDWQaOUEr1J+1BN1J1FC9+7ewGeXrIhhtI5yWx0R4PaUgVUiTrwuUPwJ1s/cv1/+GA7VHBUn7Sk0NWxKKRHyZMGADd+aiouPX1S9TODewf5gweMxOeO2z1UWU1Q1b6tSTO7sNe7ueDG5zHtqocd9fLk4vVBiujLtD0GO0p631eOxlVnT4l8Xd4/VfXLd9Rtc0d9JezscGtD73hxBdZua8ftL8SXN0wV7UzGT4BVtelfnLM/HvjqMa7jHV0lHyHOcrWNr/3rZc+cmPe+uhq/eOhNzzICznb7j+eX47E312HLzk6cc90zvr+Nilyv7YI2XxzPkt6ZNxkTeUj/xMf4mFbjYs4rE4IuSIMWM4l6EzWscZqhyUnBxSt3Fi00NRQU5u3JoguIEVaQYIzZfuPSpf18yvy0s6oNLD/+8tQy3PLcu4F/FwXfACnCW65lhOYkICEtAo0NBXzxhImu4yZNYu6yTfi3tDj5T8U0KAni1aTFdimjgcqyECpvjec1FfdIElmTIEZRMndJq5EmzSPsOgBcM9ve5X92qXtDwXSxwhhwwqRhOHjsQMcxuToaGwr4yonufiYSpWZU9V9d/Ble2EtAeezNdVixaZcjutjHb3jOdV7QZ+glhOpmjNmBQxgwYUhvnHfImIBXBP59yRH41vv2Eq6rP1e8H6AeY/h3quAvvA/ImivXfQLUjLwIUS1K/PzO5HfJAJx98GjsJSSn57R1Fj1fnKpZWBbwyootnmUIwwU3Po/Fa7fFfl0Vcq2KbZs5hLRkzR2zpEmL2//OVHgJ7JMWpjACceZDdCjUYqg+8RJlTZrzok0NzF1fisf569PLPANytXcV8bP7Fylzr8noQsvf/Ow7vr9V0cBYVYCXxypfIc3n2k0G/TXI2//NnMX4v5vmGq1dApm1+5STv+JDxw9MxA2glpCQlgAmje0Lt76Ib97+iuPY/QtWJ1Si8HbkKuINwe91H5vHJN+NuAWWpKdxWUhrEMwKsmruqLubqPm4VbGDZhyCv3In8blO23eE+lyfKvrN+Qea3VRZDidi+16waiseWrgG727wNskzC2BQGwPPKPeZOm4gvnD8Hop7KXaDpfup6oCHE1cFf2moaFn8/Euj+KSpakKZLFhALo/X7f38QW/RLMTi8INR9Yla7RkzBnz5BLudiM8j+wVxxOh+Ie6oPKpKfC1TjdSacOX0FDZN3jd5mOe51b7j8Q5NI/f1aHLnVfNC7Kemm6TO3we6neaa7jLEMTo6/TTdz9fY4I4mqdpU/MF/F+DUXz+hvc9tc5fj948uwW8efktflsq/SlNxy8IynzlFR0PBFj7ld+E3tvm976A59/z4xUNv4uFFa7Fmq3/amSDryjAbIvkU0UhI6zas3dYW27V6aHzxwhB2QRn3fJu0lqq9y6lJaPTIvaQjahH5QsrvWb00IyaY/qx6n8pMc8i4ARjYq1kpJMiD8oXTxjs+H7XH4OAFNeDTf5mLz/xtHk7+1WOe55nUlTwJRZ005HuaOEj7aZFkqgsNpUbIeVC1EcQXDSpzR76eKBYtPPbmusih+gGFT1oMmjQv9hnZ1/N7ndmiKmeTjuUbd+KN1WYasjCRXsPB8PVT9sJ5U3cD4BTSnHn67F9EHWGff3uj65iZJs3+u6tYwiNvxBcQSqRFEJb++Impoa9TNXeUGrP8pBOGlJMVD+kTLGhSZFeBmEOHxbl4ljcI5GuXzR2dR8P4b/L2brLZoppvN+3sDHxPDmP2fCi3fz+fMj9tkvjtPiO8x7a4CdIuGwrA9P3UG7oAsGVXuX57NTe4LD7yBglpCfCpI8elXQQXv54dzBHdi88dO8H/JENMzKnU30W7rysEf9LmjtKOe4Pgq1Ern7Qf37MQgPmzhq2ToOYwfCeT18Pxk4Zi2czpmDS8T3X3Xa6j773fGV0uCtWkzJVbqLQjqsAXIiZrbrcfZLwcsfsgAMCJe6uT3gLAw984NtA1VQl4OfZisvyv6r1zgWiXUkgrf/f0kg244Mbn8SuNQBMkNYk7uqP7HD8hTb6frne+ccWpGNirWbloveJD+3re401DoQsAjv7ZI3jfrx93HVctb79/9wLj60aBVzNfKB00tr/rO8Ap8EZZI7V1FnHuH92+dkabI8I5v33kLXz6L3MjRdXUoUs27VcmxbcA/DfvvnZS2R9eDv5gcPdIZ8ehSdu7IgB88ICRwvgbfRUtukAyhbljo5w8TUGc5pxAEoFDWNWnT27/UaOpivUVx6ZZEIJUU4Ex/O6jB+ETh49Vfj9hcHkD41NHjRcsPvJJfCoRosq3T90LNz29zPj8Tx4xFn97Jpx9cq1Z+pPTY1WJe43LXmNl3pxB9xjaGwCw28AeWL5xl0MzZDo5RTV35DuGJoZ5Ue4X9Hej+5cjw8nCxf1CoIYw8/eEIb2wdJ0+Z1n12pV/ebFl01oT4p7Yw7DvqH5YNnO65zn9evgnX3ZQqRzVK93a1lk5peJbpjJ3rAhEOz180tZsLWv5l21Qv6sgVWsSOMTPVMY8Oqn+On7t9cp7Xze6h+f9E1x19G5pxHYPfxt+62P2HOJqc+L0IJqORpk3Nu3sUB43eVXVSK2wIwyu3+5vfhWE/XfrjwN26w/AzA/PNml0n2sHDjHzu+F/J7X55jo/Bqljt4E9q+1m447yu43F3FG4CoNqPGC+/TuuADBRmaTwgQXK45dt7eL8Loyge9j4gXju7Y1YNnM6Nu2w+1lc6TMAYHt7JwB9qhIgmDWTX9+YOKxPda06e+EaAOSTRlTo29qoDc2vw8+OOEvEbbMc2twx5nHUKN+OFX5htP9u/TH3spPwwf1HAXAuZMzNHaM99ObKQsf0OmHzi5guqudXgieMGdQT8757Ej5ztF5DG3SAve7jB+Mfnznc7OQYmrTZjn70+0S9Xp/WJjw14wTj870mw3/NW4G31m6vtg/V4oc7srcpNWnlH/IdW/kdj6qEWY7mk+Yuf6uPD49pvkqvfhs0mEPWmHvZSZ7fe/VH8bu4Ni9++L+FyuMmY5nYN5Mya+fXXfDD92H+5acY/86rlfg1obBzp98r8aujuPejYjV3dMyr7hoqmAhpAR4wyW5+1xeO0txUsHCI4WX87cJD8coPym1WfB6dkBbmkU/65eP4r0/S8CBPYiJA8rUq39DP65CcH+kgJwwM4Rzd0qR+DR1dJYybMQu/f1TvnJp3wnacqENTmBD8YSb4uZedhGe+U14UD+nTUl0wiMLu6AE9lb+ViToeW9K/Ovg7sSzg+3e/hpfe3RzsPob19OrKLdW/B/duiXWnq2+PxppufpjsvsptbOZ9iyLdM2xzGNjTfIzib0QnhC5dt736tzJwSKPeJ41rHLi2RX77PMdWkH7nakKKJtWjuQEPfc0dTp8zQsrBozOP9BRUtN/kgx7N3oKsp3Ah/C1q0oIGuDDBTJMmqNIq8Fc3a/6qWMrBb9GrJfgmretalX/9guA4/P0CDAZ+c51cp/L5v30k3vVINXBIzJ1GFd3RZEM07gBdYS+n20xicJs79vLpr160NDZULSxEsVanEf717DcxbsaswALiUz5pZ8JEdwwS+CavYzIJaTEgTuJhFprNDeoOxsNW/+GRJeEKlgPCKuaijqPybpnJ9VZs3hX4vkP6tGBEP3vRx28rNpMvHO+dA8z+rf/N+7Y24vi9hii/0+VWkama/8EKZYZrOskF8TVKkjhc100mrIxY0QRaDHEfj+OvflT5fTlaWsXcUVEHb60tC3EqIbZBEtLumb8KU6+Ybeeoq/wkyKLJ7ZOmftiJw9SmRADwpRP2wJ8+cTDmX34K/n7hoRjcWx2YQTaTNblvEJ5/eyP2uPTeyNdJAq/HE59dbBM9IywkdQTVYN/1snM3/59z48nvlIT5vVzF8h2CtrDP/G0eZtwx33cckjdF/vjY0oB3UnPPl6Ypj/PxN45xWA5ao9Kk+RF3TtnHF0fzfxzQy22iLofgn/ON43DH546MdB8ZnbbqxcqmrTymXzlrIc4T/EbleiwUgO/e9So+/ZfnNXc0r3dush6oxeRUlUZCWgw8+NVjcPI+3iF3vfCNNuYzqq7bFq99fW0Ja+4YbSCVBYQf3aM2pxF5cMEa4+vfcIE6ulc10hAY7v/q0fjzJ6caJ5A0mTv2HtEXE4b0Vn5X1ZD5DIY6e3dTDK3FUDQ9UWL21/VaEE6BuUMt64hjJ9dkYr/k5hfC30CBX1JmHYGENE2oZ/F7Xc4eh+Cq+H1VSBMc1Ndvb8dFf52HUsmqttNIPmke5/7jM4crFzZNDQWcMnk4+rY24eiJ6g0P1b3i5o+PLfFNT5AWqgX17K8fg+s+frAjeIPYJvr3DOYP2aqxMBEJkidNNe6Zmrb63iPofpPHbU3ntqCuBw8tXIN/zl3uW2dJNbnh/bx9kuJQdch+eiY+qjIm71Kswj8/sRS/nq1PPu/1nQnfnb4PfviByRhQ6T9MNHesFGR4v1YcPHZApPuUL27/6WdSKLej6594G88JEVjlwCOMMdz87Lt45A210BpMk2Z+bjZHUHNISIuBcYN74f2VKFdhxhmdkMYnOP6vbvD+85Px7HTpuFtnGx0DaZk7youfhxf5h2VuUwQ/0HHi3mqhnd+VMWDS8L44KZBw7//UXgOrqSatereEA4cEXYB+d/reuOdL07DHUL0WBAAuOXZ3HDpuoPHObBxr7U6Dxd4TMZp7AMBNnz4k2A8SoKFg17L83tuEtBOqNmGb7DiPz1m0Fpt2dlTrI5JPmsfLPWL3QZEWNsyjP8kpN8Lgb5ac3s6w6tZ7DO2DU/cdrtWk/fq8AwPdo2+rv1Bn0ja8hpm4tCZBr+LlJ2PPEd7v98QA0SQd1/fTpCW0rNU+TYzNWBzzyz5p8nhgoEkLOBBfMet1z+jZUZtYr5ZGXHDkODsKJvRjZ1Rknz4vlm/chZ/epw+A5BLSfO79vbtf8yteFV42k/eZd3NHiu6YAVS2v5ZlVbU9fIGj65AbtjsjX933ajx29gBw3tTdsH8lalUUvn7ynvilJsR2GKJq0sI43PqFYQ9y3zBmniY7fAXGtJMwv6e/uWO0CcD03QS1/b/II7CIyIzTJgW6bhxr3SB5r+Ji/ODeuOz0vQPnPguC30TdwERzR+d3O9ptQUV+0/OWbcSLHvmJZr++RhDS4jd3TJo4BCjffIaR72COiVaLo9so8tWkSPTt0YS1PlYiQTRp4qYQA8Ojb6zFC+/q22AQws5Hqo0k00WlqQWGXwl0948bXV+Ms4v6adL85t05r6+JrTx2wul4KvT6T07FX59ehgE9m3Hp6XujvauE4zSuDWERH91Pk/a5m1/A4rXbtd/LG5d+Y/GzS915EHUEizyp3xDJA8ZCGmPsRgDvB7DWsqx9K8cGArgNwDgAywCca1lWPKNezogyKavMFkoWsGRtOSQ13+3Tdfbtbc5QyZ+75cXQZZGJa1ftSyfsoRTStrXpwzx7EbVUJpoPmXYfTdr3378PnnprPSaP6qc9h68TwiweTQZ7E18R83caUpNmKK8kbsplau6IYBpGFbXOKQOUBaTPHBM8Z2FTAFsRXyHNQ5O2s8Pu2/J3H77OnfNK5P/d8SpGVhb1QRY5cmlrMS+rwsPHsSDIkpmOGOnVL8otbzNHTBhUje7JOWnvYZj9upnZeJ9W/+WJyRAi+zhyPvWXuUblSAKvJp108l2//pSkkPb543Z3JVxn0r/R7uG8n6oMw/q2YM1WtfB/4V/nBbqfSZnjinB68NgBVc3/bgN74sZPhbOkmDS8DxZp8jSK61g/QajNw1pg1ZZduH3eCsexOAODB1k/2Zse+ZTSgmzF3ATgVOnYDABzLMuaCGBO5XP3JkQ7UDXekmXh/OufrfxtH1ORh5xhOiF29IAeyuN+RJ1IwgSt8NOkferIcbjhU4fg6yfvqT0nyrsy+aXXwCpGbfQiqk+a6aI6rE9a3JiO9wve26I1ee2IQcsaFGY4ep87dbSjXRQKDMtmTvfNqQb41414Xb4YeW3lFrR3FR1JwcP0V0v61wTX5F2Defncqbu5joUdn0SNTFYCzQBu7Y7XpiR/B0XLcvmO/Lniq/uVEyf63nOAQRRSM02a7ymRCZt7zNPcMaHGm5q5YwH49qmT8JdPH6r+PubH1fmkXfmhKfHeyIcs9WPAmX9URqwuv3x/XvP35f9d4NqUj9M8O0wOt7xq0oyFNMuyHgcg6yM/COCvlb//CuBD8RQrf0R5/6rkqqrJRz60cUcH2ruKiQ4CSQ8wg3u3hIpKFNXcMczP/TQ/QcLBJqVJa2BMO8namjRveMk27+wMUDob00VR0pq0oIFD/Jh+7ZO49D+vKr9LQ5Nm2oJ+9uH9seQnp4e6h99cWCgI5o6WhYXvbcX7f/Mkvn/Xgsj5qezojgF+5JLRkp+Zzz54NJ4OkHvOC69nLZUsrK0k/gZqq2mzfahsvxgdVX+ZkqXcvFg2czq+5rGRxRlhYB4ZNE8aJ+4FW6yCjS2lJYK42Sgn9V63rR2dXcm0LL25I29TcZgIC9cFU/iosliTNBuVqaZ3i4bTXNS7nrzm77fX73Adi9P0XLVm1pE1ITkoUY2ah1mWxR2gVgMIH+KwTgjTDFWNV9Ww5MnmoB8/hAtvmpfoIFCL9s0ff+JQdVRCFVHLFdQ52AQzJ9bwPmkHGPgGFgp6nzRbk+YnbJZPPPeP3iZpOkwX5IdPGBjq+klQjibojy5nXBjzWZmgC71a+Fv5tWlR7Lcs4PRrnwAAvLJis1NIC3FvO7pjEJ80789JIVdTkOd9QgjRLQaykK/xm4ffwqE/mYOVm3eVv6/h6sOtSdOfyy0ci5YVyY/XREgzypOmKELYqtP5Z8f5Ko6rBAQJG73Vj4v+6jTz5NGhd3Z04ZArZ+MH/zUP4BAEXV9MqovqfNKCRsVUEWSsjjvvWpKIgrJfLXk9V4PCpF5pMRZyo5Zf3mQK3G+3svvJ7pqo11kntlHAKs8Y2hpnjF3MGJvHGJu3bl20vBFZRG4sL3z3JOPfqgYNtZDmPvbkW+sT2SkY1recG2j84F7xX1yCP33PlgBxbCI+c1x24oHvyzVpISaKTxw+Fvd95WjPydvrsqaatKgULQuDDJK6X3r63omWw7SGX3hnEyZcei+ef9vccVkmjon4zhdXBjq/FjvCfnewYI9Vcg2Ii+Mw/Y3/JFgya/fOeS1waQEClPmV5Zurf3tpHx95oxyBdo2gTasVVeVO5TG9tB7V8OAlC3sE2HiTMUkKHSRwSNDfqWjVjL1he7+qFq8+Zz888e3jXcmM4xLKt0p+4NyncsuusuXEgwvNU80EwW9TKW4/zpJludqpZQXTwsTBzo7okV5rBa+aw8b7b6B6adKaGhT+gNJ8dfu85ZgQMg9kkA3Kjx46BnO+cSwONXimLBJVSFvDGBsBAJV/tXHMLcv6k2VZUy3LmjpkSLwRabIEXxQMNFikcnQ+aV7HFr5nO98msaN69MQhuPnCw3DJsWaJlmtN1CdWjS9Tr5gd8aom962YDYX4LWMMe4/o6+nH5+2TVhHShGf/5u2v4IO/fTJEafSULLMJN57oZHpMF+hvrilHqHpmyQb/a2qOa/1FE9pF/dhhY1yLuCTwmwwtS//sUTVpfIc/SBXKpa3VLnaUdZ+42PEKCZ/mfrw9blVM0zw1aRUhzQoeaVWkxSRPWsCcVpywoffl8fX8Q8eUyxGwnXlpYloaG7DbwJ7BCxcS/kRf+cfLAOAK9hLbfTRtJk7rTvE1FIVci5y2zqJ2jqyxFWQmaW1qwB2fOxJ/vmCq75jm5Q6hquN5y5yboH9/9p1QZdRdXwdjLLdaNCC6kPZfABdU/r4AwN0Rr5dbwuTj4BQYwxhpUBYH/WrodGFCumf+e9W/k5q8p00cHOtuvZjg+c+fnIpbP3OY84QAE13Qxe/9r63GuUJEOdWkKtvnJ4G9Ix2+Xr2e3GtRXX2VwgX+/cIKvLJii+O8qBuN5Xfjf5G0JsVrPnKA8rhJmHFd3d/87LvK41EVtjrn7QPHDIh24Qr3fGka7vy83ifUry1YlmU/o9SnxD4WpR7ue2218bly+6+ZkCZ9DnJXMceSZ3mrptK17zh9uJUDc/yjpBo4pGShpTH8RoKJNj6sJi0uIW3soMq8HfByXoFDdCSlFWYMuP+1VXi+sohWaUHiQNdu49zIkoUy+dLFkqVd0+iO3/Dk2zj+6kdx6q8fx66KVizM+8sLB48dgD6tTZHam0pb+aLkKrDeJ72GF9U8aTmN2BgEYyGNMfYPAM8A2IsxtoIxdiGAmQBOZowtBnBS5XO3JEpnLRQYjtx9kOOYOIeo8m04fBciOuib8O9LjsBvzj8w0jVO3HtY1VRv0og+OHL3wQDCTT5Bn/KSm1+oTkJAfElMg2LFsdDyKHpDgWnbwIL3tuLxN9f52tNHbUIlyzISwJIeYFVXH9a3BdOnjFCen4RmKmp/bExowcTZd1Q/HOQh8Plq0mCPSy5zR+FArfynXL5htermEV8TDzwjaobksvP6jLtFXPfxgz2//+EHJuM/XzjKeW8DTVrUMXZYX3+ftDc0ocQB4D8vrcDt85ZrrFKCleUD+48EoMrDV/43/JNmYZHJcMnNdtqepDRp/uaO8dbFiH5uixML+s1BdWwACz++ZyHeXr8Di1Zvw8JVWxS/VJOFNxuFKOU32dzf5ZPSyOT69SgkywSJ7ni+ZVkjLMtqsixrtGVZN1iWtcGyrBMty5poWdZJlmWFd+qoE0KZsUG1uHALZOJkIwYqECeIpBYlU8cNxBmViSoKvHyqiSBI0YM85z+ed2s5Vm2pvV8HYC/ComiRwmrSAOCTNz6PXyny1YntTZX3KQirtrQZDZ5JD7CqemosFLR1FFZI8xJAou4F6BZMaQk9Ms8t3YAnFq8HIEVWY/rNgiRhDPjpWXaI7Vptxqh8X2QmDOmFzx2nNh/f0V72E/IKaPTqyvIC0TSVhil7De/j+f0FR46rmguZ+KRVhbSIBezbo8n3nG/c/or2u6/d9gq+9e/5yj4YNEjPL87dH+dN3c3RtgDB/y6wuWN2+O3Dix2fkxPS1MfjrAv+GvhGnHujQ69JU1ktyG1Hvl6tfF7TIMqjmbShKGNzdzJNTdYppBsRpc2UB3r9JD+pMomKbbpYUucgytLgr4JPZlHNKINMst+5Ux02PQ348ydlsmRy2b8+47YF7xBCyEfZ4QKApet2GGnJkp7fVHlcGhuY9r58EexFeUfVmYzVa30W1dyuOWG/PT/8FiFXP2gL/HKfFCfh2pkdMpx/6BgcPXFwbe9rpDkGjttT7Y/Ni+mM7qguOwPDotVb8cYavRYpCEGGYhOftLGDemLvEX3xow9OBgBcfMwEXDRtfOByBUm6zlm8ZhueXer0LVVtFgRtFk0NBVz14f0wsn8PnHngqOpxlZ9vUiS16XHXy+85PielvdeNJb2bG7H/6H749XkH4LPHTsCnjxoX+h4bd5Q3GPv2KJvnqswf9x7Rt7qmElEF85IFiayvr7LAv+YtNxLA0rJmyhsBwukRJoRZeKpCxZYsCweO6Y+X3t2M4ZVQxOIg3akJ1RzXQJ7U+pkvmsJMwCI5imrroPraEqrgcp604DgE/Rjq1sjcMWEprWeLWzPW1FDQ3pdP8H6c+usnHImgddW1YXs7lm3YaXRNHUmbO/oRZAHvzFEkmzvGViRP+Kst1HDxDCh80jQ31kV15eOiM7qj+l5b2zrxsT8/F7iMOoKYHduaND0tjQ247ytHVz+HjeJq2vYty6r26ZN/9TgAOPqnWpMWnl+ddwDeWL0NC1dtrcsdfe5PVGC1SQReKDDc/cVpAICT9omWxYm7jVxw5Djl95ZlobWpAfd/9RiMmzHLWQ6DfLW6SLbKexmco+Ozx0yI8Ot44OPCuEE9A81j3/73fN9z3lq7HTtyFPUyTUiTFhNR1ptuPVp5cLTNHMvHRPORjdvtBaXDNDKmVYlJZK0w8GcRJ2D+V5Ci51VI4zt7UTRpXoJ4g0eeNC/i1jiYCGBJL3BUJhe6QBxR0L2P6dc+ibP/8HSkaydlemRKFL9BsV5qtWnK+5UdYbBWmjTJEkJzjtz8eK5AXj8mQlqcAlq5XAHOrf4meenEq6+KmpDbX1jheR2lT1rEBilvBgStjiwHnpD7UJ6YOKwPls2cjknD+wJw9yGv4UCl2XELafGPJ2cfNNp17DsJp6cxIcm2edIvH4v0+6pGP47CZBwS0mImzKJGpUmzLKs6aFiWU1gDgPsXqCOemYQkNiFKVC4THEKa8OzXffwgo98H9SlIgjCTGB/jk5r/wibqFNsWz5EXBTPzr9oPsbzdHTimf2zX1K33VseQz+oYnXlc5CubEaSfyWc6NGk1KjFvUbwb1M4nzYl+LScHnuAav/IP0jABCjNm1KLnmqboWLetHcWShTaNmbZKSOssqifKCYq8oKP6uwNQVDWKkrBmCtf4jBtknoe0Vv5PnZVFRBpRRJPGq3ep2kQUc0fT2uP+qLVmv9H9PL+vVV7VKNRhE3VB5o6xEaW1MLfjOdwDhGr3jzEpN0jInZ7fffQgfOFWO8KTV8LkOGjUmDuaTgxZ0KQ1MIZiwCFsz2HlHeCRionfFK87hhX+xIXMSXsPwy3PqUPKm5KFwCEqeLuLM6GpSgCJY8f11osOw/B+rbhV8S5UC8ckCCIzOAOHmGmF4oYLHHZAh9rc17Q5yf1TLqcjumONlkdBxnoWUnMUBi9zR7FttTQW8K3bX8GdL6mTwavani4RryywPn/Ziejd4l4m2b554Xb0P33UOJw+ZUTVlcGEWgXiWbpuB4D6FNK8NOtKTZokt7kCh8RQpu0pCGkvfe9k9Gj22YivPFwW1lrdGdKkxUxYnzSZkmW5/BRUnaXAGJ58a331sypYgh8FBgzv59SeNCckpI2v7FSqtFAWLOOJoatk4XePvOU4tnzjToybMQuPvbkuekENCGMS+tljJuDOzx+JwycM8j85BGGFD8uxOIyOiZleGmsAvlMe571V/fLt9TsiX3do3xbX7vmHDx6NOz9/JI7aY3Dk65sQZGHoChxSg9QgIn2ExbSsoUoacZOtT0uj2twR7oUvFwp43RVTEGwDCWnVf5PvvF5+yzwBPQD0aG7QCmiAOnBUZ5dakyY/Vf8ezejZrN/Lro63AauDMRZIQEuDPJo7+uG1aaMS3OVNb6+Nk8N+MhuX/P2FwGXa0VF7IW1Ar2bfaMZZfvt87VXP0TU5JKTFhFdbubuSY0ZHgbkjzpUse9CY+/YmHPTjh7Bll53hnZ8vL8rDaNLK4bKdx/obhD8Ow22fPRw3X+hMYi1O+EH63K9n25Hlrpm9GEf/7BEAwB2Cj0KSi7S+rU34y6cPCfSbQoF55qUyweuRCgUWagc+bq2HGJXwSyfsoTQvTMPc8Yoz9y3fO+LgPvO+RbjinoUA1PX19JIN7oMBUVlkMSBy+wlCoLYgadLS8Enj8PV9XD66vgjN6cGvH6M9TRbSuLKo6necgrljINP2GnZZ09hSPRSLTdHq5N2N7qAHnZp6locF3TAR1dwxD9ShjKYd0FRmroCiP3p0zzVb26tuKK+v2ooNhoGodKa3adOvsgZsTSg+QRRMcijWC9mr/ZziNZ7tv1t/39+6AoeUrOpE01EsYeOODlx2l70jOLzSSOWJLMwkz2AvEvYb3Q8zTpuEjx0+NvB1TBjapxXTJqq1AJYVbLITF9q/EgQ2cQcwyTUPY8Dxew1N7gYhaFAI3CZ89baXhbYTvdKaGgpoqqxADxo7AGMG9nSdk8a6hu+KR731dY8twZ+ffBuAU8Dt28pDP0dHZZpT6yV8kMAb8rleiZmThm8S1DqqJFBOoqvbHJLbfDXAieR/DNTuXTcFiCDKz0zCFHPcIOcYYToXqHzXFq7aqjjTpkuzMJbvqSuB7PtYj/JMWP/mLOEKHKI574jd1ZYtcj+uzpAezb+ts4jTrnnCrICIL45A3Fx6+t649PRJOLkScfOkvaNF3iTCQUJazIQxESgHDpF80iz3LvD8FVuqf7dXzDVcmrQwQpqw693a2IBLjt29plHlxEcIsnDXVbV4jSSju6W1e+q1QAo7sT725jq8t3lX+foxVFlTA8MRu9vCuKpUcdffVWdPMdZsxnlvsbo+e2w5WfGyGMwdLStIQIpkCDKciOcyMEffq1WURc733r8PLjhiLN43eXhN7mfSmhhTmDtKqQIcY37NBMzgG2NJvE63ljF8H/3pfa97fq/TXhjXhSzM5V+ecRGn325aqPKkqdDNBy5zR4N2z+dRU2o9NprSq6URFx+ze7VuJg7rjUPHDUy5VE7kt3bOwaNxx+eOTKUsSUFCWkzwwT2McKMaHyxYnv5lHRUhTV6UhzJ3hJBbK+VxOZAmTVNY8RpJjn+86n/70QNx/qFjkruRIYeMG4D/O2p82sUAUMlHxj9Y6sVP3E3tvEPGGGs2L//A5FjuWSpZjt3W9dvbAQA3VLRska5tWe6orzXWpQVZQIgbROXAIfZ3tV6GDOrdgh9+cN/EfGtlVJtsrnPAXJYPfKz63/z3sHzjTqNk1kkQVDZJomTyXGa64aQ6y2/Xv1Mzt8rX0gltV35oXxy5+yDsPaIc6r0ezR07MmqGFwVdn9I1NXd0R/+Wv6M9WP6vrCd1ZsK/EdPbhoL3MSXSe/u/aeNx8NjauQPUAhLSYiaI6QiHQe2T5iVwcSFN1tyFyv/CshHBx7IC5uzRnCvuANZCk/b+/Ubip2dNSew+MrpHuv2SIzG8X2voBVR7V9Hz+kFobiwICzrdxJjewmYvIc9SFDpLJYcwEqcGWo5gBwCfPGJcbNc3IVDgEOHc+Su2OPue8HeHJmhDXvjyCXtg8kjnwsG0JbsDh5T//fkDb2D6tU/U1PTpm6fsWc03Zqo1qZo7JjCuxmld5xcUoUtT0S6fNM3v9x3VD7d+5vDU8xj6ccER4d0WtrX5B7S47eLDQ1+/FsjNVLc80gnjcjPhm3D2D92/uWbOm+6DHtTMbzYsQkTXNPzIh3ukBPpwJcdcz0qkyqxqJaOQ7REmR/Cmqwst7/djufGXLEsZOIDDd7nkyVUXWtjn9kKS5cA/j8zoAeVw4h8/fGxATZoa8RUk2mczunka9plfeGcTLMuKZQffoUmDRqDOaP0FobNoxa5WmDCk7MQ+eoDtozOsbyuWzZyOA3z8W+MmSFuSFxvvbLADNpQsYPPODizfuBMX/W1eXMVLha+fshdmffloxzETjWfZ3NF5TBzvtrZ11TS64xdPmIj7v3qMqxycaXsMrvpYci4+pmzO20sRlj4qYTdtVHlGddoJHgG0syueyrXzXmZzMDPNNRf++tl8bg73heb+jro+pXt98pj2tdtecXx+e53brH3ddrOAIZyoidWTxtakhQtKliQ8eTmPGp5V/74oUJ60mAkzaDEoJnnLQtGgxckmIWF2EgpCsIk0dkr692zGspnTAQBPCekE/NDtfonHkxxUUvNJS+iR/t8dr2J7ezE2n7QOYSGkalcZXdcEQhfKOwrnTt0Nl1R827a1dfqcnSxB1g/yptJV9y+q/m3BwrE/f9QRobaeMB035TFLtoRIy/SpUAAgWWndfNFhrvM+d9zu+Nxxu9emUIZs2tGBBsbQZeADyau/03A15zdG8ftkdSxLetO1IQ37twAM6FVeW/zh0SW46v5FWg2wbi73W089uHCN61i7Jqm6jsxr0nJANQBTHdZltntYjuBNI5xPmnuAKFlmE7Y8CIfZlRETYqc92QTpZLqiOs0dIxbIgzoIfuXi9VVbYxFrxR1cnRlrVnefg9BZLGVsbzFegvmk6Re+JQt1K6AB7va9+5DeyvP8gmOkEd0RyHdf/N7dC1wWJLq5k29qdhnmEzUNJFLr6jPVqCf9XvMyB+45rNwfdWbuuufQrae8Nn+D+vKFyW1bS/IwNPCAJgN7NadckvghTVpM8JC+YXzSCkwdxU0nYDQUmHYSimrumHaHNBVMSxawrb0L42bMwi/P3d/xvTMEf3IDYBpax6RhiEewbWDMEQkuC9aOo/r3iP2aHcVSXYSq1hGk//xr3grtd3W4wenJiZrAFXJLcQV+EgOH1LDSshDJL87EtLp5hD9nXLmpelfMJ/ccGo+Pqwnff/8+OO+Q3YzOTTrZb17mwBP3Hob7v3o09hpmvye+jgD09RRGyxXU51a8x31fORpD+uh9sNKAv+OsmTqKzDhtEj5y6G7YTZHqJ++QJi0muHAUKgS/MnCIpZ1oGoV7yGPI524OnvFeTGad9qBrMibKp/xr3nLHZ7Euk1znZGBdoyH8Q8f1TPLGg8o3opb1d+fnj8TdX/ROKh+Gts4ipl4xu/o5joV1lpoVzysXlZoIHClWnGlbdofgt/9uKDCnT1ocBTNk1ID4NzCC8rpPbrMg6M0duZDmbQ5pyrjBvXDLRYfhyjNrFzhq7KCeWp/AOz53hONzkvtHx+45BMP7OZMKn7ZvbVJehGHS8L4OYWzyyH7Vv7U+aSF2LNuDCmnCPYb2acHg3hkT0rI0IWlobChgjxpulNQSEtJigmdA7zBwSD7roFGOz6o8aV5CmjgIyGcsE5z1TWHIjm29yW6NPP8+u3Sj47MzBH89+qR5P1OURy6weJyDRQ2BBaBZoWGuZf0dNGZAIpPf9GufjP2aKtLaxTxp73iStWd3DzYezH3SnJ/FPlAsWfjo9c9VP9dS+/i3/zsU13zkgNrdMGF0ijIenY9Hso2Do/YYjB7N3tEk48Rr2Jw8sl/N3uNRewxyCYHHT4pnvKgFNwk5NXX9d+WmYDnPgOA+aWIk0gE9s2uux8C6nUVEFiAhLSamjh2Ar540ET84Yx/fc4/dc4jjM4Pa3NFE1R7Lzj2zF1FJm0f4EUd0Hqe5Y/Tr6UjLZ1r1SN96316xXHvWq6tiWVEXmK0dtiwr86GqOWcdOMr/JIGgu6Y69tHkgqmamqQ0OTLG8L7JtuneNR85AP/4TLCw2z2aGmoTwSzFBYTJsMkYC50LLGmG9m3FBw8I1vazjJ+Z7s6O+IS0LMEYHO8x6elc3mjLRms2Y5Cwaaerp789847j86mTy5pCrw1GnZZWx98vPAwnTBqKq86ekpnxQCR7JepekE9aTBQKDF89ac9wP1ZIaV6atLhhgpSWdoeMI9LR829vxC3PvYNSycLpU0bEUCqbw8YPxHNvlzV3WXK2nxpTAsdtbV2xrHXLc41dP02KpMJZqj9OFhyPxfrPQhWJ7ynoQn7CkF5Yu7U9NmE2q5i8Jga3+ZmXLxhtWofHLzBIHoW0qv+UR2uL013hjP1H4n+vvKf93rKyOYaHQfcUsgUDNzP1WqYEXcOMH9wLN37qEP8TU8aClYn5qLuRj+3tOodV/hMxDwASvdeUZbSMmDvGIKS9vHwzLvvPa/je3QuMEnIG4Yz9R1b/TkvreOWZ+7qOiakfolZhHO9AnrybFDuEabc1FWF8SuOgLUbzq7iJshBrLJRHtr8/+47vuZFJ1SfN7Oau6I4Z3DlPizExOv37LZTbApqkZQGuHfTStshfRRHaDhs/0PN7CwCTVpBpW+KERVds2bKHv4MHFqzWXquWAX9qTR0/WmYhIS0F5IFMlYzTPERwDOVBdpJyxq08jHtMcWg5Yr62KSdMckeOE/PVRPVfiqPOnLnq1Kkpsjidp2VuMlDwRchavUQZEhoKBWxrj3ejJIt4VZGYEFquS8+67SYroiMmDAIAfOiAkT5nmlMqWZ5BM3Z25K9N2nO0/pw4haRmHxN1lSYta2OXKTphVp5LiyUL67e34+Xlm7XXSivXYdKkHVSuu0JCWsKcoHCklZu6yietyyNE8PmHjqn+Hcc8XmAMewwt5xE5NeXoTHGHzDdJCB4IoXxZ2jRsjFG4sCxg3KBwu9ojK9G+CsLGg2UBzRVzxwuOGFs9N+0NARVRQ5GHab7LZk7XRmvr37MJAPDhg0dHKVYkorynnLgiRsarim6t+PAx5p8nTUTVlPYd1RcTh6pzsOUVvqiNc4OkaFmeWsq2zvyZ31bryaPNuDRpkTZY/H8c5/3SRKtJkzrh6q1tvqbbdSqj+W7+To/ZtYQoQz5pCbL4ytOUk7ArwpdiMOz06OlNDtO2eAKHjB3UC29ccSpaGmsXpUpF3LtQYfLGeZEFTZqKOAWe/77yXmghjQtjBcZw2PiBeGjhGowZ2BN9KtqEfUf5hz1Ok6w5bvdpbcIbV5zqu6udJFGqpCGt6Do1Jqy5o1d7Uw3tlpX8Tn2t+yXfmItzo6msSWPQ2QWoAtlc/8mpuHbO4tjKEDfchNNrrHdZ6US4X6NBzleXJi1bw2d0pGby/Nsb69qcUYXpOyXT7WQgIS1BVCZeE4b0cqmNGVTmjvrdmkaHaZuaH31wMm597l0sWr2teqxHUwN2KW3xyzdPW0AD7FQGcWFqNmpKTaLUhaC5MT6fNCCY2cyEwb2wdP0OAHabLzDgwmnj8b7Jw6sJJh//1vEY0b8V3/r3/MD3CEtLYyFQ0IqeNQylbUoW+mVY4lx45xWxP8rVEXRzpbGhgKKVnKneS987GQ0Gi/M44cJHnAJ9seStSVP5rGW9pVrVegpQ0khacO/fqgJJqEziXv7+yZn3VdOVLm7LnjxiWgVJj/WXn7EPLv/fwkTvkUW6xzZnBnjsW8fhhgum4s7PHan0S5AHN68wrk2KSfSTghkZAIwe0MPliK1bgGZp/Dx8wiDcdnGwEN9edJdBVtwQiMWnLMC5I/rbgjXXpDHGwBirCmgAMGZQz5ovhJ78fydg9tePMT6/V0pCWpZbaZSyRTUfDULW0zyo8mF6FVllXjS4V3OimrQBvZrRt7UpseuLTBjSC4C9kRbnIq9oWZ5tL8/RHWu172HyPlwbzoqf9O/ZjH49atOmQhNgnOomSwoXfj5pQTVp504NZsI/JqR1T97J9qxWR4wd1Asn7j0M/Xs2K5o6c40RnV6aNIW5o5xMkzGGq8/d35H3qV9P50D5lRMnVu6eLQ6rOJLHQaLmjhmSbmNfoAbZrBVOFs0dlefWuM6G9GnBHkP7GJ/fszl944KsrQGiLEqSMoE5+yD3BJ+mSSintcm7DHLzDyLE7j+6Hxirn8AE/7z4cNz4qalVYTROU+NSyQp8vazXKn/vQcbQKDXqp9ksBw5Rf9e/Z8aFMgldPanaxPFXPxr5fj/+kDtCc9bx80kLOtYfufvgKMXpNqQ/qxFgDK5Q8T9/4A3t+eKCnM/X8mTfwBj6tjbhNMGZ84z9nNGzeDCCDMkasRP3gka8XJaqLW4hLeyzNQvmjiqybv0mapvHD+7l+n6wkABVRdYXemGIpElL6IWrwoM3K3Lx1ZKrzp6CWV8+2nVcXNy4fXjMfdLKQgeLxTrgDx87KPI1ojK0T6sjUm3smrSgQlrGVSShzB0jYDKl6Dbjjp44BHd87khc9/GDYy5VMugDh7jbRBwbv4ePH4gHv3YMfv7h/SJfK2mS8kkjHzYzSEhLAdkengG46elljmPvbtyp/b24IN+yqxOAu8GrBk/5HH5KPYdWjVtIy+pELmoRghbxpL3dIf2DsLWt0y4H16RpBuAsaR9VtAiakO+cNsn1/an7RqsrHWK7ynYNBSOxiVhx2bSFtPMOGYPdh7gjL/JXy8AC+aQteG+r4zPfiPMwsvBEfBfvm5xuFF+R355/ED591DjsNdzWeEfVNOxoLwb298vmyG5jBw4x/02QKjj/0N0cn018BN2uG+UDlmXh4LEDUo8WbQpfAw2QNIBxLR/GSqZ6jDHsOawPzpm6m+YX2UFcT3hVR9BNFvJXNoOEtBSQO37QhauqcbuihtXGtzgVzqsMbFOESIE6kjAN+tSR42K/ZlSaxMAhAZcbqrYSpE2KwVm4sJi3NsURg/Ko6sBrQ2PPYfUVGp0TZWOihjJaLnzS5HGa+2WZUCiwirljOClN3MjJUhTTcYN74QdnTMb+o/tj/9H98N8vHoVPHD7W/4ce/OellYHTP2R0/60KF86DCJ9BNmB/epZTq+O3iLYsSxtNMuNV6UJbpTE1Ct0GeR4QU+l4EXRMydIYlGWyPavVKfKiJ2hTVe1OywMq7wBeO/RZSWCt4sJp47XfTRndD31bG5UBVGRi90mzgK+dtCcA4PPH7x7rtaMQZYGqak9BWkSXsGjkDuJZbFMmiP0o6BN85cQ94y1MRojSg5LSnKqum7YmTeaSY3fHhMG9qoLYF4/fw7U48zOfFWlg5SV32I2nrNWPTI/mBtz9xWnYb3R/o/P98jKFCVqT5WHLqmrSAghpEZ4nzG9ZTqU0Xmx5XInrMeT1WYabmQteJyXLu9xB+1stg0rlmWyP2nWKbOccdEGrWpDLuxJ5XSRzvvf+fXzPMVmrxJ3M2oKFfj2bsGzmdIc/Ra2R5SpxEgiaVFK1oxWk+YiRSPmCtDNA2Pss4Wee51UvOe9yeiqvN0hgjs8cXd5kSapKVNf96KHZMh2acdokPPzN49CntTxenDJ5uDKv1OgBPYyu11DRpIXdd9pnRN9wP8wofkJn8FQC2ZYsSh4+abKpYhz4aeG8NCtBrTmygvzEcUWHdls65W+yYMy7hwTtb7VO9ZFXSEhLAVluCNpfVUkm3T5p/tepatIy2gq8noExZmSGFXuetIzMPT2a3NE8OSfuPQzfPMVcq6OaMIKYyXQIAhnP6RW3BrNWiH1L1S+9aoXBuXBpybjmwhS+4Prlefsb/6a1KdlUBvK7ed/kYTjvkDGJ3jMOVH3tiW8fb2T2WCgwMLDQmjRTYTAvNBYYrvnIAdrvTXbql82cjvdNLm+2Zd3c0SsE/0/P2g/LZk53HfeqgV+c492fQ2nSwC14gv82TXTPGtdzyMJeDmU03xWBzjxW1S69ziec1McqImdE3Z1pUkhV8oRkoh3p1VJeSB0yzh0pLQt4aTVMd5TjDxwS6+VC46/xMR8AVZd6Y80290EN7V12ziEu5GQ1wIofDQ6fNPf3XvUqf/d/Hia7MqbO2WkgBr7gPPOdEzx/w7VuqqTB3Rm5rzGU242JQNHAECkEv2pzL8+o8s6JmPq85CVw1kFj+gNApJxjN35qavVvv81ZP22PqhXmUfgA7HYklz8+Ic35OY+aNL+qCJqMnswdzSAhLQXkjh+HJk1n7jigV7P2OoN6t+CBrx6Dn5w5JVgBaoQ+1xaMfTPiXiRmxYzDT0gLMglEnTDaBU0aL1dOFWmST1qweolrzhnax9xPqRZYih38Xi36fHKfO253NHIhLaaGIOddkut6twH5SHTqCrSgWRyqsM0dy3X6BQ+f2Ee/eZzy93nj+UtPrP4ta6aZTw8Nugi0oE67kRV+/KF9cf9Xj8bQvq3GvxGr4KAx/TFmoN1P/Mb9cJq0MvWyNxPXY9SLVYUXgYWu/A1HqVD/LSeDuFTfHq31Zx/ezxUKvFHhG+IKHFL56Kcl22t4n8RNk8LirUkzyxfUXTVp4td7DfNO5hxVSBPrhF8rDxqUh752DPpIwoZjA0SpSdNfL0otcuH/A/uPxJlCAvoswPuZ+OxebWaPIb2rQX3i6n9fP3lPXPfxgzF9v7K/pThmXv/Jqfj2qe50CXmAV6NJH5T71tiBeoFinELYGNBTv2GXVUSBRJ6nGPPuj6ZCqRi97qdnTfE0oUyTlsYGTBoezK9QHIbLAppdJ35tLoxMX63LjGxmmmJXhfOh47AI+ev/HYoR/ZymxnmMbOhr7uihqX/gq8e4jiURebseISEtBdwh+PXnjh3YEwfs1t9xrEkVgt8gcEjWc1TJ9GzW79abErdPWlbwW4CI3x+71xCfc83v+6UT9sBx0vXEiYy3u1IOBuCJw/pgz+FOAdbPTt5rQ6WhwBypEMJw2r7DM9dPq7nvhHJ5+uYxu/3F6Zt46r524A2xik7eZ1jmIxfqCPKmGyo+aby7BdWMfeH4PQKdnzXcfrje/XHRajOTbVGw6NnciBMmDQ1dxqzhNrMT//ZrPz7mjoquzU3eVBvJWUbXjuLYazx2zyGO/Jvl++UUj/rwGo/EHIhD+rTgZ2fvh94e1hg6/vLpQ3DPl6YF/l2eyVdPqhNcyaw9eqxqd0I1ALp80oTPf/rEwfj9xw4KWMr0ue2zh1ejxMmkZu6YEQ2Rn2lBMJ8083MvnDbeFeVPfA38q7zukjl80hTfe1VVocDwpRMmOo7JC0s/siagAcAPPzAZFx8zwbF49Wsz1Qk75mZgVbV62asnUy47fW/XMZNhpVBgjkYZVEjLqsWEKT2a5fLH0wbkYBd59BeSufb8A3Hjp6YqAlbYz+an7fKrBtXvj99rCC4+ZgJ+9IHJ5oXNALpn7YopOrRcH/XQxmRMA4EM7dOCcw/ZzeEmYcrxew3Fvgb5cesJEtJSwJ0nTd+4mxsaXEOhOrqj/pxTJg/H6VNG4KOHjsHREwcHLm9a7D6kN7584kTld6Jvhhf1Gt2Ra04/c/R4XHq629RLHC8v0gi6nCALXgbmao8lhSYtD+aOgHuZ11hguHDaePzhYwdpklnrKTCG3i2N+Nb79qoeO3kfszQNKr+vrDCodwsuPX1vx+ZQWmsMsVX95vwDcfExE9IpSAQ+c8yEqu8Tr0eTxWBjwTlT5NFkKgpKTVocVSDtJ9TDAvoD+4/ECZOGucZqscn4zWW+gUMUv29sKODS0/fGoAD5/7IAf1LGgG+cvGd1DO+Maf0g10dum1iM5sVtnUXvEwkAJKSlgmwK5tW2e7U0uAZDVXRHeUGpymk0oFcz/n7hYeYFzQB6AYI56kUXcj5KnrQZp7mFn6zIHnzX6vxDx+DiY9wBBPiAee7U0Rjax9vRPNBaT3GuWCX8vlmpJz/k5tVQYPje+/fBaVNGBNakmTpOTxreR7vrmJcFol8xk3qKi4+egJ7NDThy90E4Y/+RuFShlcoD9kZdxTzYoL80NxQc46GuDQVJv5En+rQ6zaN4cu+o8GtYCt/LvOO1Iexnkl5H1WAMA/ClEyfi44eNBQB0FZPJ95nbug1p7ijC26DsxkOoISEtBYL4pPVqaXSZFShNIKUOklcfDRlVvz9s/KByKGphAtIJc1HM7i4+2r1LnxWHaL6LrtMm8vowEZaCmE0pq1m4B/dBysskJC/zfH3SvEJ+V77iPnun7DNMWV+WBdz1haPU18hJt/VaHjOGxFa6++/WHwt/dCoG52ynXkcQTVpTY8GpSZPq+O5Kmzpur/rxqRIZIkU95dEuoyL36bxslJggp/YQ1wV+lij1VA9+8EetBvKpVFOf1vDpDrzvV391G9T8un/PZvzz4sN9z/vIoeX8l/uM6F5mjpycLAnqC/fgqG/cPZsbXLsXTQbJrJty5rirQ14MzvvuSdhjaG8w2PX4r88e4WFT7p6ITp8y3OzemgV2FuDChG6jL8h4GWQyVp0ptuctOzsBAP16JjO5xY70QFFM+rjgPHlkPyybOR0HjhmgPM+CpY2ElZfJ2zPRfG4yT6UPr6eigVmVbB0hbyjsv1t/LJs5vW59No6Z6AxYVB63orc0+Qo56YJGyGbnA4WUPH4bmP4+aWV0yYrzhDxi8fVU1EBQ2vvVSRtbNnM6jpgwCIC5T5r47PzPScP1EajfN3k4ls2cjuH9zFNP1BP1sZLPGUHypPVoUvikKbbb5YV2vWjSXOZowgG++cyYXtBQTUSmQolqwew1mNQS/gy6HXj+vYlMGWTCYIy52q/4ccygch6ew8ZnM0G6jPzo4maHStTwqirTncRiydIG+snL3O0nTNbLIiRpeD2a+HA2NTg1R40NDK//6NSkipY5DhrbH++vpGAAyn7YcbazegocwpE3hMV1gemG47C+9aG19qKqSauMwNX5NaHo0HlqY37B0rh1UdBk1kB+NiXTpD5W8jnDnScNGKnZJWhsKLjOVwcOcR6rl+SJ8mAmhuBeuXlX+W/oF7eqxU/YpK6zv34sTpsywv/EGrDPyHK+HF0Y2yCJJf30Hk/POEE4F9hjaG/H9+Ig/r7JwzH768fi1H2962mgR5L1WrKzw+m87EhmrXRK01/LtFntaC8qkhqb/TYreGrSmH+bIpys2drue05Tg9PcsaHAFBEP65cCYw5tYqEQk09a5SJ8sVlX8Vg81tcm5o7PXXoiHvr6sZprZ8SsJAEaqpYqyTxjXpuYap7iVWRqvCVudOdt3kuD+ljJ5wy3TxrDbz56oPZ8V+AQRW+QhZm6MXeUOjHfrBGnZ8b0vgkqM6IgAgxnzjeOdQknafKTM6fgtosPx9hBmoS2AR7Rz89uZH87ESdjwDdO2RO3XmQHoJHbs1893fOlaXjwa+7klmmws6PL8dlPgPdaFipzEyrO29bW6VoI5i/gimEDo0nYkyDV0yQFDsnTbnwcFBhDu2Df7TeOXzhtvNF13eaO9VOvXoKYuIGp2uxjDBjWtxV9NX5ZORmqjND5JSYlpOW17yrLXRXSzNacP/rgvjGWqP6Jni2YCIxKk9YrQGI/le2vvLj0Wmw+/q3jsWT9duP7pYn8FKpktl7mjiqftDChq3cfkh0BDSjnPDqsYgvuRRKL/qaGAo7cI3wqhyz5zMj9xKFJU5zvGd3RsF01NRZcmyjVJOB5kdJ8yOkapOYEqaemBucWQXer4wJjaO8UhLQC8xSoxlVMr02pk67nwOuZeHTHQb2acfcX3YGM/AQJ0Vrnga8eg007O8IVMgPwJ60GDqn8a2KG/N3pe+OKWa+Hu2HOUMlhfJPX1CdNzNeY02qoKfWhbskZcuhbP/MgeZhQacnEDvKxw8Z43n/MoJ44PicRwBobCrj8jH2qn1W+O14dXbUTFkaTljeCPGGwwCH2uT/+YL4SlqqQm4dD0FJUi1dNmdbjvy85AqMH9HAc47fNSh6+qFRrIqbnqbcFtB2Av1xT93xpGn5y5hTP3zQ1FBwN0G8cu/nCw3D9J6fijs8diWs+ckCE0mYDxpw+uAWfEPymGrEgkXDzhtd4wr87eZ9hGD3ALdCK1XfPl6Y5vrv4mAm4SIh+vNfwPjjcYNMw69jCGkOBmfmknXvIbskWKkOo5jirqkkLvq7qBkuxyJCQlgLywFnwMNcD3I6bKp80UTt0pc9knzc+dZRttqLaySnXX7KatHomSG2I1XzE7vlJjK7DlUdIeEBl4BBPnzSzmtxjaB+FT1p+NWlnHjjKdSyuyffoiYNx1kGjcM7U0fFcMGPwetp3VD981GdzraHgjJvJx7Grzp6CX5yzv+v8aRMH4+R9huHgsQPwwQPc7yhvNBSYY27TheDn/q7meZvK5K/n+eM1nvDvdPUkHpWtH755yl4OjUjesUPw209dsmy/dy+6w6Yvx2vjI1w9dJ+6C0ssQhpjbBlj7FXG2MuMsXlxXLOeOWfqaIdPip8DtEl0x+4yUNjmjqJPmr6r3zb3XdexOnHXM4KbInzuuN1x2r7q1ANhhdawAViyRNCFmVdPjVIfVU1aDlVpvzrvANexuAKH9OvRhF+eewB6NteXZX6o5YzLb6b873mHjMHZB9enECtSYAyj+vfARyqaC52Q1qMiPDQwhnMM6uVzx+2OsYN64oRJ+bAuCYJXZL7Tp4zA2EE9tb57cns7ag9bU1YPY7+IydN88oixyuN59S8LStmtxH2crx/CVEM3qbpIxLlcPd6yrAMsy5oa4zXrkpH9e+Dxbx9f/Vxg3o1VHmhVedLykgQ3KiphlIFpI3JtquTt8rtGvfP/Tp2E7wtmoyJhNWl1MU97yESqZuKtSXMfO/9Qb+0Ihy96ciijuWBeuybG14inLFmFv+cgzynPE2EWh1yzlkdsk2AehVGdkY+buBcKDF8+caLvdScO64PHvnV8ZiLOxonXcDKkdwse+9bxmKDxt5ab1y0X2YmH62LsB/B/R43H0D4tvqaxj3/reIwZqPZxDDVW5XCctyz1mMPXU40Rdr/rKVhP3HSTpX32EBt7uZF7+KR5+c04rlH/2GYJzmNBOnl3GBCqz2iUKM38umI7q4cdRK/qUT2dp0+aol8eNmGQUbLXIPmycoVPE5miCSITJM9fHumqRCmUE1R7Ic8SYfof91HLI7ZJcPmzrupsM7769DMLgmjuKLcWv+bj1b7qZQ79/hn74PnLTvKtC681RhitYmtzPpfeqkflz0/GjskQV0uxADzIGHuBMXax6gTG2MWMsXmMsXnr1q2L6bb5xSlk+PmkOT8rA4cotGv1CB8o3UKa+TXqQbgIg27BEkTAF+uuHqrRy2dDOSl7PHSUdsXfgV/i0DzgveVk06e1ETdfeJjyu4Ygmww5hPvKBtl9Lkjmfd1tHLO1zbYmTdXQuBCnqp96CKAShKljB2q/U41vS39yupDYuftg8qy6c8R2drXkGyqmozl1ctndYOlPTkdLY/78+XSCKt+cDLPBWC/CfpLEZeg/zbKslYyxoQAeYowtsizrcfEEy7L+BOBPADB16tQ6nXrNcWjSDH3SjtlzCH5xzv7K3dfuNmE78qQF9ICpF1ONuAjSdOptkegZolrxpWc/jSBgyaZcecdk8i0wBqaRUQoFAEX1d/UAN8kzCVt99kGjcceLKyrCb31tkgSBV5UYTU5VBZYQEKNni3MxzBjDS987GQf++CHf+40frMlBmSM+dOAoLF2/A9fOWWx0PvePt9DN2pdi81f+Wved2IXFpdlL3zvZEVzl2vMPxNa2ztwFLuO5WMcP7o231rpTN3H9gMqf+pUfnFL9+9XLT3HtueWrJtIhFiHNsqyVlX/XMsb+A+BQAI97/6p74zRb8V7U8EmnuYFhSJ8W5Tn15sgbhKDmjnkbJMOwq5KkuUezPUnolv+BQvBLmwt5xyuRd9AgHiYC1sPfOFZ5fFQlJL8ucWzeULWM2V8/Bif90p4WCkzf9gb1asHKzbswol9rQiVMl86KuaPKKkKHbHFRD/0vCHIEVF2etOr3jGFw7xbc86Vp+PXsxZj9+hoAwAAD37PZXz8GQ3rXR9sb1b/8HHx0evY7J1bbnwo5PUR3wO9JyyH51Wfp1h5yO2tuLGBwb/X6Lcu8f78RGNm/Bw4a0x9zKn1IhI9DqnRH/XrY81kfxdzWrTYCQhJZSGOM9QJQsCxrW+XvUwD8KHLJ6h3Z3FFxCo82pbcqt6kHrUYQZI1OWG1QvbKtvSyk9W61u7jOrDGsyQH/WVMDQ6dBPpkswnve/zt1Eg4ZN8DxnSp9g1dVqc6X0Tnpf+XEPbH3iL51EWFOt+s8YXBv6Tz9MnDaHoNxzJ5DcNI++a8PFbytqIJAyfCNBLlOu9uYLwfX0eVJq35fOX/fUf2qm1V8w/ORbx6HzR7Jl/cY2ieeQmcAuZaG+2x88L2m7uJCIaLVpHl8V+8wxqrBhlRjToE5+2Woe4T/ad0ThyZtGID/VBZ6jQButSzr/hiuW9e4zB0VrZTnJuHnek3o3W5XVfybBdv1C7K4+fV5B7hyxOSBjq7yTqmomRnerxU/+uBkfP/uBY5zw7YcXo+NhQI6i/m0TeNNYdygnpg6zum/obKx92pnJf3mtC/NjQW8f7+R4S+QIRjU45lKg601ISoA0/cbEXPJskMgnzQeCRKyT1oCBcswskmwbt4UNWmcBum3ZVPG/JszmhBWuFBpef99yRHYXtkArCdsPzy7sj522Bjc8pydwqebdTc1qnFd0nAHuxzVqh+RhTTLspYCcGfSJDxxmTuqGmul0R+31xB86shx+MLxe2iv1+2ENDGABYKHsuacddAo3PniSu25H1Ik6s0DF04bjw3bO/Dpo8Y5jn/i8LFuIS1k07GFtPy3PZUAUVRoB1V19dOzpuDt9Tswabh+9/3KM/fVhnDurjDoN0zq3aG86KNJ+/xxu+P3jy4BYFtSlJuofX53MNsWqUb8FIQw1bwp+qzJv42ykZJXwvYlVduUN7LqBVU7Onri4KqQxrqzKk1AGYLfw9zRD68q/dv/HYoVm/yTidc79ZUhNEeIjd3PXK+poYDLPzDZ83rdTkgT/2bBdpXF3GnfOW1vTyEtr/RpbcKPP7Sv67hqwtaZQf7qvP3x/Nsbfe/VkGOzGF5y1eSjNHdUXMMkF9rHDlMnQs0z5xw8GsfsOcR13FSz7TXm1XtKETtwiFqT9skjxlWFNI5sRtrdzB3543JBSyekVqM/Ct/L/mzdibBLgyh5r/JGVZPm8Pm0nz9ocLJ65Zun7InVW3Zh3KBemFpxDygUkulbqrmlO0JCWkqYTLZBdsDqfVHjhS6pqQ6VhqQ7o2s6Zx44GmceOFr7u67Kakm30MwDvI+pFjLK6I7dt5u5+Pk5egMKs3rSO+N3lz0nnSatocBwwG79cci4AVi3rR2A24evu9QRp0EStBoK6namMnest+ipQQhv7th9GpjqScX+5RXd0Xmd+q6zsYN64fZLnHkW/++ocfjfK+/hiAmDqsfGD+6FjxyyW62LV5fkd3WVc5g0gagGgObGADl0utvq0bHjxQIZjPOJ+lNHjqNFN8Kbw3B/t88eMyHO4tQU/ujGmjRqMEqG9Q0etcxr4VPv9fzZY8t9RvecjAF3feEoXDZ9HyHaXvfUpH35xIkA3AEK/AOH2Md2dpZ9ZoNE0+zuNOV48y0ofj60DGYCmFe04HrlwDEDsGzmdAztawekeeSbx+Gzx+5ufI1uMpSFovv0wowhh1JWTdZBdrK60XgKQPbpC7Z/VbQsLJs5HZd/YHL1dwMNwjLXK2EHyNamBiybOR2fybOQxv9V7chHCVdlgJjoNO88d+lJmHnWFADl5xLHs0EefUvX9OpdAPnOaXtj2czp2u/Fp7ccQkn380n7+sl7YtnM6dXnFfOgKZNZl9yatKmV6HSH1KlPVRJ0l/YF2AKYvK4QTjDSXO81rG+8BSO6PWTumBLiAFDOweE+J8iuX7fzSXPUX7BFXdKL77xR7yYaJphr0uK756wvTwvlbJ1VzjtkN5y673D079mMRau3VY8/NeMEZdJwBn2/7WbDmQtxfKtq0qQ66a51xOtBFzhEjP7IueCIcTjzwFHo37P7bsYRHlR90twmsuWvzdL87DOShDQiXrqZ/iU7yP1dNdkEEtLqfOdZxqVJC/D44uK7qWJSKkfmC2JqmneGahKkdwf4pKza5CgqQsHFKdC2NDagZ3P97JMxxqqL4KqGEmWNq5hUnSP22/49nYlOu9MuvgqnJs3Ok9YdzR3dVPxItSH4Uf2eUygwEtAIX7SaNJiP/WFMvwlCR/2sEHKGPLkofdICCGl8sTmkmyy45cVKICFNCBzSt7UJ/7z4cOwzsi/2u/xBAMA9X5rWrcwf6yGBclgK1R1U93cqAarbrosDYlJPZV9chn9fcgT692zGSb98LNDv6xnx+e0Q/HLgkO5ZSfyxRe3svqP64rWVWx3ndbeNSyI8qpbisHZkmpMU3POlo7Fi0844ilX3dMM4PoEhIS0l3Ls0bloVu8/66wG//9hB2H+3/tEKlkO0eeY0tDY5hd/DhahEAHKZvDoK3Xktw9uNasE7fcoIfOkfL9W6SHWBWQj+8jlTxw3Erg5nMvTuKoAoERYyOnOs7oRoCMr/7tHkniu7mwtAXDz8jWPx9vodaRejpqhiAjhcUmAem2xIn5Zus1keFzTc6yEhLSsoGunp+w43/nmBMZw+ZUSMBco2sgN9kE7+xRMmJlCi/NKdfdK8ojuqTO66YwjvMFS1HR7niMGO5I2T7r6+Zg5RpJL3S2qj3VWQFTVpRUtdN7pjhD8ThvTGhCH1E9TIBOb6wynkM6YO7sb52Yf3w+5DeiVTOKJbQ0JaSpjYO5skk2SsPFnV+4T04w/t68pbwin4DKAy9RRVLxbqu+kYYSoUkIxmhkl1ysGTdN91SxSPzxiwta2z+rm7+u3xudKCndhapTUjTVoZPmZRbehRhuB3BA5x1981HzkAb64pB0g6dyrlBAOAP33iYLy2ckuka/z0rClo7yz6n9hNICEtJUx80gJdr87jXHzi8LHa7wKmSdMy86wp+Mfc5TFcicgbpgteigwaDK9alb87ao9BmDyyH+54YQXOObh7L3ocPmlCCP47X1xZPd5dZRCVJk0tpNWyVNmFB8oy2fTtrvA2xRzHmON7Oc3RyfsMwwcPGJV84XLEKZOH45TJ5hZgKs4/dExMpakPSEhLCROfNBMYyjuK3W3nmUm78HE8/kcOHYOPdMMBIo66O2C3/rmMiMkXMKZBekhGM8MscIjzpFsuOhwAcOnpeydRpFzhjO5oH9tvdD/MX1Heqe5uYz7HNqW1qpsmZO6op6jIG0c4UVkyOX3S3OkeqH0RtSB/q6o6Qe7eQcz1VHTXXVWg/Ox+A+bzl51Yo9Lkjziazl1fOAr/+uwRMVyptmze2QHAPCoq+aSZYhI4pAbFyCnOPGl2m/uy4E/bXc35quaOli2ANJK5o5aqkNZA9eGHNjAPU+UppPqMiuXptUwAJKSlhsvcMeL1utuAIT6tHJpaRXerH1P2361/5A2CPDNtj8EAYJxywSIhzYhu3KRiQalJY0CjsNDutnUsBKXhmnCVuTKN+WW8BFmijMrc0a/90CZAfHTn4GV+kLljSsgL47DzCatEDulu85FJnrTRA3pgxaZd5fNrVK488e9LjsDkkf26tXboqg/vh/932iTjxPFk7miGrr81FFh10UiLaD2qPGkAc7TT7lp//Kkty6qOXSpTPlpEl+GCLNVHMOQ8aXL9UXUStYA0aRkh6E7CY986Dk/NOKH6ubtN2A4hrQColoWjB/Swz+lm9WPC0D6t6BEgF1890tLYgBH9evifWKHYjQXaIOi0s098+3jhnFqVJn84QvCLmjRhZdhdfYzEtlX0EEBIKClTrITA7K7txQTepsQqcoTgh7v+urMFClE7SJOWFQL297GDyjk5BvRsxvrt7QkUKNvIO8qq+VgcZElIc1M18aCqMaY7ax3DILct0ayUTFz0OOut3OYYnBH6umu/7dNaXrY0NRTQWSwLIGTuqKeLfNJ8UdWMnCKEhP74oenUHxLSMkLY+eSOzx2BJ99ab2yuVS+0NDqFNNWulmOSpvFVC18s85x7Km6/5Ahs3tmp/rIbQSH4zdB1N9mEiPDH1qQxNDU4F47dke+cNgkj+7XifZOH4+6XyykJVPIHLarLFIvkk+aH7ZOmDhzCQO0pCfhsyhhwz5emYen6HamWJ4uQkJYRePdvLLDqzpcJYwf1qmrVuhMtjbaZni5PWmNBPeASZWRNGgO0sZYOGTewFkXKPCSjmSHmsiLigQFolJM1dUP6tDbhi5Uol7a5o7teyLyvjJ1LjtqODpVW350njdpTUjAA+47qh31H9Uu7KJmDem1G4AMCDQRmiJo0XZ40crL3xh28hupI5pfn7o/pU0ZUP5O5oxm6piQuhqi96RHHK3G3uYlM1hzYQhrwwQNG4qqzp1S/I5mkzEcOGYNJw/vgo90wB6gpKtN/OU8aCf1EGtAwljEaCwyDe7fgW+/bK+2iZJqWJmfAC5UQ1lMIikHjqxteJbxuHOYdVF8AgLMOGo3ffeyg6meS0cww8TejJqZHNK3iaR/KIfhpyhY5es8hAIDzDx2Daz5yIM47xBZEyDytzPB+rbj/q8dgeL/WtIuSK+TmQ+2JSAMyd8wI1R1BxjDvuyelXJrsI2rSAChXfD2a7eZNmjQ3skka8zR4JAASXo3RadJoI8AIcT0o9kjyK3Iyqn8PLJs5XfkdjfmEKf6BQ6g9EelA23IZgQsd799/ZMolyQfNkpCmGj57kSbNE5e2g+rIl/49zJJeE2Xkfsc8viNsHP4wlX8tC90uQFQUSPNBmGKbOwp+7FL7ofYUPxaZpvhCmrSM0NrUgJe+d3I1vDDhjTxeqna59hzep/o3hft201jxb+GTz5G7D8KXTpiIs//wdJrFyjT77UaOzSaY9DbamTajtWLa3dZZooViAMiHiDBHFR1a+JaRkJYo1Fe1kESQIQb0ol16U+QNGLmP//eLRzls8Gl8ddNU8axvaijgoa8dg9EDeuKdjRQC14vj9xqadhFygS4oiEpDRHjDE87v6ixS4JAAUBAuwhTVcCVuIjVocrESRNKQ7QSRS3go9OP2KjuOy5qy/Ub3l3Ke0AgrIyY3nTisD3o0N5DGkYgFakXx0aOiSdvV0UWBQwgiAbivp5gHs6HgXD9QZF8iDUiTRuQSbst8+IRBAPy15YyVtWubKCFzFVUQApJl1fzxEwdj/ODul48wLPoQ/OI51NhM6NujCQDQWbQocAhBJAD39ewqlVzHgLJWtlhy/YyICN88byYLAS0kpKXItecfiJ5SKHnCDL6pxRctqvWeM5Icw36j+ydfsBxBQQjMed/k4WkXIVfoNLIU3TE4Xzx+D7R3lvDRw8ZQnyWIBGhUCAmyaXGxRJq0uJkyqh8+f9zu+PjhY9MuSmYhIS1FPkCRHEPDTQ/4ToxqUUhrQG9UjtBUZ0StoLZmRq+WRnz/jH3SLgZB1C3Nlc0PUbvfKGVDJ3PH+CkUGL596qS0i5FpaFuOyCV8uOQ7YGpNGi0Dg0JVRsSB1tzRkXuIGhtBEOnDfT3FEUnWpJGQRqQBCWlELuEDJtcGqZZ7tAQMA9UaER2TVkQtjSCILMDdJgoem0h7DesDgqg1JKQRuYRvavFcOKpwy7RRHx6qOiISBg2I+md4TpxEqSAIIi6qbhMeY9LQvq1YNnN6jUpEEGXIJ43IJZaRJo1WgUGhhTMRCwaWQdQ/w/H6j06lfGkEESOWyYBVoamBobNIpo9EbSAhjcglPNCS7JM2tE8L7v/qMeUPtI5R0qu5ATs6isrvqMqIOChWNlFk53sH1NhCwZNbE2qaGwvo6KJ46YQ53DLHJJ/qvMtORgfF4ydqBAlpRC6RozvyFd/AXs0Y2Ku5fIQWgUoe+eZxWL+9I+1iEHVMV8mp6VYxvG9rrYpDdCOe/Pbx2LCDxjfCnNam8mbSyP7+Y1K/nk1JF4cgqpCQRuQSbmzAhTTVWpBkNDVD+7ZiqGaBTBH3iDgoFrkmTd+efnLWlFoVh+hGeI1vBKFij6F98OvzDsDx5OtJZAwKHELkEkvSpPEkr11CwkkSOIJDNebP9Z+ciivP3DftYmQaE01a7xbaIyQIIht86MBR6NeDtGREtqBZksglpYpJOJfDWpvKfhrtXbavFQkcwSG51p+T9xmG5Rt3pl2MTFM0ENIIgiAIgtBDmjQil9g+aeXP3Jm+vdN26CWBIzykhSSiULRISCMIgiCIKJCQRuQSbtXIhYnWxnJTbheielGI7+DwOuPmpAQRhq5K9DMvnzSCIAiCIPSQkEbkEtknTWnuSOvDwFCdmUH15A33SWtsoCmGIAiCIMJAMyiRS+zojuV/uZD2vsnD0ykQQRBVqj5pJM0Gom8ruYkTBEEQZWhGIHIJ90nja8CGAsPcy05yRGei9WF4yCfNG5Okp92ZqpDWQPUUhGe+cyK6imRqTBAEQZCQRuQUS/JJA4AhfVoc55BPWnB4dZIvkTfNjWSE4EX/SsLXkf0oX1UQelFaAoIgCKICzQhELilJPmkqSNkRHC70NpMvkSctJKR5Mn3KCJTOB07fl8yPCYIgCCIMJKQRuaSqSUu3GHUHr88mEkI8aWlsSLsImYYxhg/sPzLtYhAEQYTmzs8fiS07O9MuBtGNISGNyCUWDDRptSpMHdJEvkSeUP0QBEHUNweNGZB2EYhuTixCGmPsVADXAGgA8GfLsmbGcV2C0FGqpEPzcp2i4BfB4QEfmsjc0RNqW+E568BR2HN4n7SLQRAEQRCZJrKQxhhrAPA7ACcDWAFgLmPsv5ZlLYx6bYLQUTKwdywwYHDvZnz95L1qU6g6gCcDJ580Iil+ed4BaReBIAiCIDJPHJq0QwG8ZVnWUgBgjP0TwAcBkJBGJIadJ80rcAjDvO+eXJsC1QmdxbKQRpo0M846cFTaRSAIgiAIog6JQ0gbBWC58HkFgMPkkxhjFwO4GADGjBkTw22J7sxJew/F829vxOgBPdIuSl0xqHczAGD6fiNSLkn2WTZzetpFIAiCIAiiTmGWFS1xJmPswwBOtSzrosrnTwA4zLKsL+p+M3XqVGvevHmR7kt0byzLwtZdXejXs8n/ZCIQW3Z2om+PRvK7IgiCIAiCSBDG2AuWZU1VfReHJm0lgN2Ez6MrxwgiMRhjJKAlBNUrQRAEQRBEusTheDIXwETG2HjGWDOAjwD4bwzXJQiCIAiCIAiC6HZE1qRZltXFGPsigAdQDsF/o2VZCyKXjCAIgiAIgiAIohsSS540y7LuBXBvHNciCIIgCIIgCILozlCcbYIgCIIgCIIgiAxBQhpBEARBEARBEESGICGNIAiCIAiCIAgiQ5CQRhAEQRAEQRAEkSFISCMIgiAIgiAIgsgQJKQRBEEQBEEQBEFkCBLSCIIgCIIgCIIgMgQJaQRBEARBEARBEBmChDSCIAiCIAiCIIgMQUIaQRAEQRAEQRBEhiAhjSAIgiAIgiAIIkOQkEYQBEEQBEEQBJEhSEgjCIIgCIIgCILIECSkEQRBEARBEARBZAgS0giCIAiCIAiCIDIECWkEQRAEQRAEQRAZgoQ0giAIgiAIgiCIDEFCGkEQBEEQBEEQRIYgIY0gCIIgCIIgCCJDkJBGEARBEARBEASRIUhIIwiCIAiCIAiCyBAkpBEEQRAEQRAEQWQIEtIIgiAIgiAIgiAyBAlpBEEQBEEQBEEQGYKENIIgCIIgCIIgiAxBQhpBEARBEARBEESGICGNIAiCIAiCIAgiQ5CQRhAEQRAEQRAEkSFISCMIgiAIgiAIgsgQJKQRBEEQBEEQBEFkCBLSCIIgCIIgCIIgMgQJaQRBEARBEARBEBmChDSCIAiCIAiCIIgMQUIaQRAEQRAEQRBEhiAhjSAIgiAIgiAIIkOQkEYQBEEQBEEQBJEhSEgjCIIgCIIgCILIECSkEQRBEARBEARBZAgS0giCIAiCIAiCIDIECWkEQRAEQRAEQRAZgoQ0giAIgiAIgiCIDEFCGkEQBEEQBEEQRIYgIY0gCIIgCIIgCCJDkJBGEARBEARBEASRIUhIIwiCIAiCIAiCyBAkpBEEQRAEQRAEQWQIEtIIgiAIgiAIgiAyRCQhjTF2OWNsJWPs5cr/p8dVMIIgCIIgCIIgiO5IYwzX+JVlWVfHcB2CIAiCIAiCIIhuD5k7EgRBEARBEARBZIg4NGlfZIx9EsA8AN+wLGuT6iTG2MUALq583M4YeyOGe8fNYADr0y5EjqD6CgbVVzCovoJB9RUcqrNgUH0Fg+orGFRfwaD6CkZW62us7gtmWZbnLxljswEMV3x1GYBnUX5gC8CPAYywLOv/wpczXRhj8yzLmpp2OfIC1VcwqL6CQfUVDKqv4FCdBYPqKxhUX8Gg+goG1Vcw8lhfvpo0y/r/7d19lF1Vfcbx75MX8ioRbBKtCAENhABJsBAQYRGBYHlRwYoVRFtAwdJIMFCVuijyUmqFJaEZkKhdTQRkWWJX00IbqlCWBtSGNyFgW6S0kcqbFBGQWJP8+sfeU27GmcxsZrjn3Huez1p3zdy3rH2e7Hvm/M7Ze984Yij/kKQvAzcNu0VmZmZmZmYNNtzVHd/Qcvd4YP3wmmNmZmZmZtZsw52T9nlJ80jDHf8TOGO4DarYl6puQIdxXmWcVxnnVcZ5lXNmZZxXGedVxnmVcV5lOi6vQeekmZmZmZmZWft4CX4zMzMzM7MacZFmZmZmZmZWIy7SzEaYJFXdhk4iyfuhQs5s6Px5LCNpQv7p3IbIWdmryf2ruRrzh17S1PyzMds8HJJmStqj6nZ0CkmzJO0PEJ7oOShJcySdDBARW6puTyeQNF/S+eDMhkLSgZKWAbtW3ZZOIOm3JF0PHAHejw1G0j6S3idpgrMaXD6mmF11OzqFpL0kLQB/FptsuKs71p6k7YGrgMMkvSMi/l3SKB/k9E/Sa4HPAwcCz0i6GVgeEc9X2rCakrQj6YvcDwYek3QncEVE/KLaltXeSmCipH+LiHX+TA4sfyYvBuaTcsN5bZukPwI+BHwZ+G9JoyNic8XNqiVJrwM+C+wHzAFuz487s35IGgf0APsD/wW8XdIVEbGh2pbVU0teBwCPSroJWBMRP5YkFyBbyxcSeoDDgA2SDgdWR8Rd3u8PTNIbIuLxbttvNeGq0oeBTcANwIXgs9ADkTQauATYHBFzgE8ChwC/WWnD6u1S0omuucAngOOAiZW2qMYkjZG0HXAb8NfAYkifSQ/pGFAPcGhEHBARV4P3YUMwHTg1IpZFxC+76Y/2SMpDG3uALRHxNuBE4N0AzmxAhwJTImIecCqwO+CTcgM7BNg+H1OcA7wZOEPSOBdo/XotMDkiZgEfBJ4BzpE02fv9XydpsqRrSSfj9omIzflYtit0ZZEm6a2SZuW71wKfAf4UeLOko/JruuY/cbhyXjPzH+WrSMUZEbEOGEe6qmZZn/61JCIW5d/nA08Ce1XTsnrq7V8AEbEpPzwX+CYQknoPCsOFWpIz2zPfvRwYJWmspHdJOk/S0ZLGV9nGOmntY5KmA28DHpC0UNKNkhZJOig/3/g+1rLPfwn4SEQszk8F6WBnxwqbVzs5r97h//8LvCP/vgCYQhqps1MVbaujPnltB0zNV81+BGwhFbrvqayBNSNp15b9+Y7AQZImRcTTwDeAZ4FF+bWN33/1cSzwY2Ap8EXorhNMXVWk5Y5+M6nQWCnp8Ih4LiJ+EhHPAsuB86C7/hNfqT55XZeHg/4wIp6X1DsUdhPwQHWtrI9++tdhvcMaJR1Nugp5K/BpSYvzMKLG6qd/HZafmgTcHxHfJl9Nk9QjaXrTz6z2yWyFpIURcR/wXeAJ4CzgBeBPgI83/WC6nz62MCKeBP6D1LdOyj+nAeflwqSxfay/z2REvChpbH7JE6QDaA9v59fy+mo+prgduEHSatJB4QrS1cdPN71Q6yevBcDDpM/jhZJeD7wJuBPYW9KkqtpaB5JmSPpH4CvA9ZJm50L228CS/LLHSYXavDykr7H7r165n03Id28BlkbEEmBnSR/Ir+mK6VwdX6T1OatwLnBfHrbxt8BpfV5+PfCipN4zEtu1pZE1MkheH+3nLeOBn/bz3kYYJK+P9D4REf8QETMi4grgMtKZ/B3a2dY6GGJem4AdJO1COriZD7w+Ip5s4hXuIWb2CeCCiFgYEctIowP2BbZvZ1vrYIj7/OWkfG6NiBuBK4EfAQe1sam1MJT+FRG/yj/XkQq197a5mbWxjbxWs/Xn8VHgyIj4CvBnpFEnjVtsaxt5/R1wSkQ8TCpmdwauA9aS5j3ulk8QNOq4op+8vh8RhwP/TCpkZ5MK/wMl7ZZHnzwJbKThUyn6FLXXSdojIp6NiKfyS5aQ1lRoHbXT0Tq+SCMVEb0d/0XgV/nxKcAPWy65ExEbSVfSTpF0AenM6pQ2t7dqQ8orIjZJ2g94IiI2SDoTOL3l7EVTDLl/6eWVQ78DvI5mno0eSl7jSVfT7s7PnUwq2t7S0Cvc28psfT67+kJE9LT8gV9LujrUxLkw28rroXy1bC1wE6lvERHPAG8EHmx/cytXsg+bCNxBsw8GB8pre1L/mp33Uz8FfhsgIh4kXSF6rP3NrdxAeb0GeETSrIi4m3QC5V0RsRy4F5igZs5L682r90rPQwAR0UM6YXki8BPgX3i54FgP7AL8st2NrdogRe3Fkv5/eklErCIt4HZhfm/HTwno2CJNaa7BN4HLJL0/f9DXAjMl3UvaeY4mVdtHtvxHTwP2Ji0zvCoinqui/e1WmNc789v2BmZLuoU0fvy2PIeh672C/jUmL35xDGmu1b8CP2/KWcIh5jUG+CvSHMc1wNsj4qPAP5GvclfT+moU9LGVuY+NyvP2jiEN8XgI+HllG9BmBXldL+kI0tWO8ZIukfRdYDNpNb5GeCV/I/Pw7Z1IKxc2SkFeK5Tmtj8I/I6kiyR9B3gKeMr7/K3yGgVcK+lI0rTjlyQdD/w98L2IaEzR0U9em4D/AfaVNFfSXGA9MIPUzy4F3ihpmaT1pH3Xc03pXy0GK2o/KGlay+uPA86S9FngSqU5yp0rIjruBrwF+D6pcNgX+Bpwbn5uD+BvWl57PmlJdEirCq0GTqh6G2qe17L8+ydJQ18WVr0NNc/rC6ShLicAdwHHVb0NNc7rAuDylvsCRlW9DTXP7HzgCtIBzzGks9DvqXobap5XT/59Gmnp72Or3oaa57UUUL4/x3kNug+7LP9+SL7/3qq3ocZ5tR6DzSXNRzu+6m2oOK8bgDNJVxvPJ131X0v6GoyvAWfn900nDdF+d9XbUEFmC0knvHuA9+fHLiINLZ6bbzeRhtDOannfXqQTcrcD+1S9HcPOoeoGFPyHjeo9mCMtS3p1y3OnAj/LHXoqaf7Bnvm5g4FVNOxAcATyErBD1dvRIXndmPOaUPV2dEheq8gHhE26jdBnckzV29FJeVW9Dc6rvrdh5HUIPqbwMdjw8jot5zU139+t5bk/JK24StM+ky0ZlBa1i/L7dgKuAX636m0YqVtHDHeUdApprPfF+aEHgA9I2jXfH0taPehi0jygHUmXOxeTJpB/i7TUdyMuE49AXrdG8mx7W16NEcjrNoBozlDQkfg8NspIfCaheyZDD8Z9rIzzKjPMvK7BxxQ+BtuGIeQ1BniENEIC0iI0SDqdVMDdA2l8aLvaXDVJo/TyvP4DgLsjYnVE3EvqP5cC4yPiYuCsiDg4Iu4izaHdCBARj0XExyLi61Vsw6uh9kWapMmkavrPgaPyJNT7ga8Cl0q6g3Rm6/dIE3d7x/I+BLwVOC0irslFR9d3+BHK64uVNL4CI5VXE/oWjOznsZINqID7WBn3sTLOq4yPKco4rzIFef0+acGs6RERks4mrbB9RkTcU03rqzFSRW1XqvpS3lBuwM755+eAr+ffR5PO1hyc778JWAlsV3V7q745L+flvOp1c2bOy3nV5+a8nFdN8loBjMv3J1bd7oqymkz6OpDFpGJrVn58KWmY4x2keWf7ADcD0/PzZwPrgP2r3oZX81b7K2kAEbEh/7oU2FXSOyMtgftcpKWWAT5GWh2uiUt4b8V5lXFeZZxXOWdWxnmVcV5lnFcZ51WmIK9fkL43lEgrqzZORLxAGr54JWml5wvzU+eQ5ud9KiJOJs3hezr/BPhSROwf6bsdu1ZHFGm9IuIJ4C+BP873N0uaL2k1aXLhRdHM71nql/Mq47zKOK9yzqyM8yrjvMo4rzLOq4zzGhoXtQPrXXK3Iyh9T9AWSauAx0lf7Pct4OGIeKTa1tWP8yrjvMo4r3LOrIzzKuO8yjivMs6rjPMqJ+kM4KSIODTfnw98hrQ4zam58G2MTruStkXSRNJ335wIbIiINe7s/XNeZZxXGedVzpmVcV5lnFcZ51XGeZVxXmVyUbsceFrpS7wvJ83jWxIRRzetQIO0YkqnOZM0uXBhNOjb6ofBeZVxXmWcVzlnVsZ5lXFeZZxXGedVxnkNUZ+idgFpOOiaaltVrY4a7ggvXz6uuh2dwnmVcV5lnFc5Z1bGeZVxXmWcVxnnVcZ5lZF0LulLqT/lorYDizQzMzMzM+suLmq35iLNzMzMzMysRjpq4RAzMzMzM7Nu5yLNzMzMzMysRlykmZmZmZmZ1YiLNDMz6xqSNku6T9KDkn4g6RxJ2/xbJ2mGpJPa1UYzM7PBuEgzM7Nu8lJEzIuIvYCFwFHABYO8ZwbgIs3MzGrDqzuamVnXkPRCRExuub8bsA74DWAX4FpgUn56UUTcKel7wJ7Ao8BK4C+Az5G+UHUccFVELG/bRpiZWeO5SDMzs67Rt0jLj/0M2AN4HtgSERslzQRuiIj9JC0Azo2IY/PrTwemRcQlksYBdwAnRMSjbdwUMzNrsDFVN8DMzKxNxgI9kuYBm4HdB3jdkcAcSe/L96cAM0lX2szMzF51LtLMzKxr5eGOm4GnSHPTngTmkuZkbxzobcDHI+KWtjTSzMysDy8cYmZmXUnSVOAaoCfS2P4pwOMRsQX4EDA6v/R54DUtb70F+ANJY/O/s7ukSZiZmbWJr6SZmVk3mSDpPtLQxk2khUK+kJ+7GviGpA8Da4AX8+P3A5sl/QBYAVxJWvHxHkkCngaOa0/zzczMvHCImZmZmZlZrXi4o5mZmZmZWY24SDMzMzMzM6sRF2lmZmZmZmY14iLNzMzMzMysRlykmZmZmZmZ1YiLNDMzMzMzsxpxkWZmZmZmZlYjLtLMzMzMzMxq5P8AHVmekX9bSKcAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"dataset.plot(figsize=(15,8))\n",
"plt.ylim((-5,30))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "miniature-article",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-01 | \n",
" 20.7 | \n",
"
\n",
" \n",
" 1981-01-02 | \n",
" 17.9 | \n",
"
\n",
" \n",
" 1981-01-03 | \n",
" 18.8 | \n",
"
\n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-27 | \n",
" 14.0 | \n",
"
\n",
" \n",
" 1990-12-28 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-29 | \n",
" 13.5 | \n",
"
\n",
" \n",
" 1990-12-30 | \n",
" 15.7 | \n",
"
\n",
" \n",
" 1990-12-31 | \n",
" 13.0 | \n",
"
\n",
" \n",
"
\n",
"
3650 rows × 1 columns
\n",
"
"
],
"text/plain": [
" Y_t\n",
"Date \n",
"1981-01-01 20.7\n",
"1981-01-02 17.9\n",
"1981-01-03 18.8\n",
"1981-01-04 14.6\n",
"1981-01-05 15.8\n",
"... ...\n",
"1990-12-27 14.0\n",
"1990-12-28 13.6\n",
"1990-12-29 13.5\n",
"1990-12-30 15.7\n",
"1990-12-31 13.0\n",
"\n",
"[3650 rows x 1 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "opening-peoples",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Date\n",
"1981-01-01 NaN\n",
"1981-01-02 NaN\n",
"1981-01-03 20.7\n",
"1981-01-04 17.9\n",
"1981-01-05 18.8\n",
" ... \n",
"1990-12-27 12.9\n",
"1990-12-28 14.6\n",
"1990-12-29 14.0\n",
"1990-12-30 13.6\n",
"1990-12-31 13.5\n",
"Name: Y_t, Length: 3650, dtype: float64"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset['Y_t'].shift(2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "killing-cartridge",
"metadata": {},
"outputs": [],
"source": [
"dataset['Y_(t-1)'] = dataset['Y_t'].shift(1)\n",
"dataset['Y_(t-2)'] = dataset['Y_t'].shift(2)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "traditional-flight",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-01 | \n",
" 20.7 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 1981-01-02 | \n",
" 17.9 | \n",
" 20.7 | \n",
" NaN | \n",
"
\n",
" \n",
" 1981-01-03 | \n",
" 18.8 | \n",
" 17.9 | \n",
" 20.7 | \n",
"
\n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 17.9 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 18.8 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-27 | \n",
" 14.0 | \n",
" 14.6 | \n",
" 12.9 | \n",
"
\n",
" \n",
" 1990-12-28 | \n",
" 13.6 | \n",
" 14.0 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1990-12-29 | \n",
" 13.5 | \n",
" 13.6 | \n",
" 14.0 | \n",
"
\n",
" \n",
" 1990-12-30 | \n",
" 15.7 | \n",
" 13.5 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-31 | \n",
" 13.0 | \n",
" 15.7 | \n",
" 13.5 | \n",
"
\n",
" \n",
"
\n",
"
3650 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Date \n",
"1981-01-01 20.7 NaN NaN\n",
"1981-01-02 17.9 20.7 NaN\n",
"1981-01-03 18.8 17.9 20.7\n",
"1981-01-04 14.6 18.8 17.9\n",
"1981-01-05 15.8 14.6 18.8\n",
"... ... ... ...\n",
"1990-12-27 14.0 14.6 12.9\n",
"1990-12-28 13.6 14.0 14.6\n",
"1990-12-29 13.5 13.6 14.0\n",
"1990-12-30 15.7 13.5 13.6\n",
"1990-12-31 13.0 15.7 13.5\n",
"\n",
"[3650 rows x 3 columns]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset"
]
},
{
"cell_type": "markdown",
"id": "prime-trailer",
"metadata": {},
"source": [
"#### Χωρισμός του dataset σε training και testing set\n",
"\n",
"##### training -> 01-01-1981 μέχρι 21-12-1990\n",
"##### testing -> 22-12-1990 μέχρι 31-12-1990"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "mineral-envelope",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 17.9 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 18.8 | \n",
"
\n",
" \n",
" 1981-01-06 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1981-01-07 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 15.8 | \n",
"
\n",
" \n",
" 1981-01-08 | \n",
" 17.4 | \n",
" 15.8 | \n",
" 15.8 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-17 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.4 | \n",
"
\n",
" \n",
" 1990-12-18 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-19 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.9 | \n",
"
\n",
" \n",
" 1990-12-20 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 17.2 | \n",
"
\n",
" \n",
" 1990-12-21 | \n",
" 13.1 | \n",
" 15.4 | \n",
" 14.7 | \n",
"
\n",
" \n",
"
\n",
"
3637 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Date \n",
"1981-01-04 14.6 18.8 17.9\n",
"1981-01-05 15.8 14.6 18.8\n",
"1981-01-06 15.8 15.8 14.6\n",
"1981-01-07 15.8 15.8 15.8\n",
"1981-01-08 17.4 15.8 15.8\n",
"... ... ... ...\n",
"1990-12-17 13.9 13.6 13.4\n",
"1990-12-18 17.2 13.9 13.6\n",
"1990-12-19 14.7 17.2 13.9\n",
"1990-12-20 15.4 14.7 17.2\n",
"1990-12-21 13.1 15.4 14.7\n",
"\n",
"[3637 rows x 3 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(dataset[3:3640])\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "accredited-deputy",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1990-12-22 | \n",
" 13.2 | \n",
" 13.1 | \n",
" 15.4 | \n",
"
\n",
" \n",
" 1990-12-23 | \n",
" 13.9 | \n",
" 13.2 | \n",
" 13.1 | \n",
"
\n",
" \n",
" 1990-12-24 | \n",
" 10.0 | \n",
" 13.9 | \n",
" 13.2 | \n",
"
\n",
" \n",
" 1990-12-25 | \n",
" 12.9 | \n",
" 10.0 | \n",
" 13.9 | \n",
"
\n",
" \n",
" 1990-12-26 | \n",
" 14.6 | \n",
" 12.9 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 1990-12-27 | \n",
" 14.0 | \n",
" 14.6 | \n",
" 12.9 | \n",
"
\n",
" \n",
" 1990-12-28 | \n",
" 13.6 | \n",
" 14.0 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1990-12-29 | \n",
" 13.5 | \n",
" 13.6 | \n",
" 14.0 | \n",
"
\n",
" \n",
" 1990-12-30 | \n",
" 15.7 | \n",
" 13.5 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-31 | \n",
" 13.0 | \n",
" 15.7 | \n",
" 13.5 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Date \n",
"1990-12-22 13.2 13.1 15.4\n",
"1990-12-23 13.9 13.2 13.1\n",
"1990-12-24 10.0 13.9 13.2\n",
"1990-12-25 12.9 10.0 13.9\n",
"1990-12-26 14.6 12.9 10.0\n",
"1990-12-27 14.0 14.6 12.9\n",
"1990-12-28 13.6 14.0 14.6\n",
"1990-12-29 13.5 13.6 14.0\n",
"1990-12-30 15.7 13.5 13.6\n",
"1990-12-31 13.0 15.7 13.5"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame(dataset[3640::])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "looking-international",
"metadata": {},
"outputs": [],
"source": [
"training_set = pd.DataFrame(dataset[3:3640])\n",
"testing_set = pd.DataFrame(dataset[3640::])\n",
"# training_set = training_set.drop(dataset.index[[0,1]])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "mobile-contest",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 17.9 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 18.8 | \n",
"
\n",
" \n",
" 1981-01-06 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1981-01-07 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 15.8 | \n",
"
\n",
" \n",
" 1981-01-08 | \n",
" 17.4 | \n",
" 15.8 | \n",
" 15.8 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-17 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.4 | \n",
"
\n",
" \n",
" 1990-12-18 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-19 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.9 | \n",
"
\n",
" \n",
" 1990-12-20 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 17.2 | \n",
"
\n",
" \n",
" 1990-12-21 | \n",
" 13.1 | \n",
" 15.4 | \n",
" 14.7 | \n",
"
\n",
" \n",
"
\n",
"
3637 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Date \n",
"1981-01-04 14.6 18.8 17.9\n",
"1981-01-05 15.8 14.6 18.8\n",
"1981-01-06 15.8 15.8 14.6\n",
"1981-01-07 15.8 15.8 15.8\n",
"1981-01-08 17.4 15.8 15.8\n",
"... ... ... ...\n",
"1990-12-17 13.9 13.6 13.4\n",
"1990-12-18 17.2 13.9 13.6\n",
"1990-12-19 14.7 17.2 13.9\n",
"1990-12-20 15.4 14.7 17.2\n",
"1990-12-21 13.1 15.4 14.7\n",
"\n",
"[3637 rows x 3 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_set"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "adjacent-filing",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1990-12-22 | \n",
" 13.2 | \n",
" 13.1 | \n",
" 15.4 | \n",
"
\n",
" \n",
" 1990-12-23 | \n",
" 13.9 | \n",
" 13.2 | \n",
" 13.1 | \n",
"
\n",
" \n",
" 1990-12-24 | \n",
" 10.0 | \n",
" 13.9 | \n",
" 13.2 | \n",
"
\n",
" \n",
" 1990-12-25 | \n",
" 12.9 | \n",
" 10.0 | \n",
" 13.9 | \n",
"
\n",
" \n",
" 1990-12-26 | \n",
" 14.6 | \n",
" 12.9 | \n",
" 10.0 | \n",
"
\n",
" \n",
" 1990-12-27 | \n",
" 14.0 | \n",
" 14.6 | \n",
" 12.9 | \n",
"
\n",
" \n",
" 1990-12-28 | \n",
" 13.6 | \n",
" 14.0 | \n",
" 14.6 | \n",
"
\n",
" \n",
" 1990-12-29 | \n",
" 13.5 | \n",
" 13.6 | \n",
" 14.0 | \n",
"
\n",
" \n",
" 1990-12-30 | \n",
" 15.7 | \n",
" 13.5 | \n",
" 13.6 | \n",
"
\n",
" \n",
" 1990-12-31 | \n",
" 13.0 | \n",
" 15.7 | \n",
" 13.5 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Date \n",
"1990-12-22 13.2 13.1 15.4\n",
"1990-12-23 13.9 13.2 13.1\n",
"1990-12-24 10.0 13.9 13.2\n",
"1990-12-25 12.9 10.0 13.9\n",
"1990-12-26 14.6 12.9 10.0\n",
"1990-12-27 14.0 14.6 12.9\n",
"1990-12-28 13.6 14.0 14.6\n",
"1990-12-29 13.5 13.6 14.0\n",
"1990-12-30 15.7 13.5 13.6\n",
"1990-12-31 13.0 15.7 13.5"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"testing_set"
]
},
{
"cell_type": "markdown",
"id": "vocational-literature",
"metadata": {},
"source": [
"#### Συντελεστής γραμμικής συσχέτισης για το training set"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "timely-pharmacy",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
"
\n",
" \n",
" \n",
" \n",
" Y_t | \n",
" 1.000000 | \n",
" 0.774558 | \n",
" 0.630640 | \n",
"
\n",
" \n",
" Y_(t-1) | \n",
" 0.774558 | \n",
" 1.000000 | \n",
" 0.774748 | \n",
"
\n",
" \n",
" Y_(t-2) | \n",
" 0.630640 | \n",
" 0.774748 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2)\n",
"Y_t 1.000000 0.774558 0.630640\n",
"Y_(t-1) 0.774558 1.000000 0.774748\n",
"Y_(t-2) 0.630640 0.774748 1.000000"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_set.corr()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "answering-rachel",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEHCAYAAABGNUbLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB5BUlEQVR4nO29e3xU13nv/d26jKSRhDS6IEAIdEEICwoyFhdzs7GwYzcuTnuC3fT0mKR1iU97HOL4pIlznDoXv0navLZLfM5bm6ZN4KR1DakbOyR2bWMMCAy2wEBARkiDJCQB0mhmdJsZaUbSfv/Ys5f2jGZGIyEhCa3v58NnxMyevdfeM/OstZ/L71FUVUUikUgkM4uYyR6ARCKRSG4+0vhLJBLJDEQaf4lEIpmBSOMvkUgkMxBp/CUSiWQGEjfZA4iWrKwsNT8/f7KHIZFIJNOKU6dOtauqmh38/LQx/vn5+VRVVU32MCQSiWRaoShKY6jnpdtHIpFIZiDS+EskEskMRBp/iUQimYFI4y+RSCQzEGn8JRKJZAYijb9EIpHMQKTxl0gkkhmINP4SiWTG4nB5eeWwFYfLO9lDuelI4y+RSGYs+6ua+OFbF9lf1TTZQ7npTJsKX4lEIhlvtpXnBTzOJKTxl0gkM5aMZBNfvqtosocxKUi3j0QikcxApPGXSCSSGYg0/hKJRDIDkcZfIpFIZiATavwVRclTFOWQoijViqJcUBRlp//57yiK0qIoyhn/v9+fyHFIJBKJJJCJXvn3A0+pqloKrAX+SlGUUv9rL6qqWub/99sJHodEIpkCzOSiqqnGhBp/VVWvqap62v93N/ApkDuRx5RIJCMzWUZ4Ioqq5IQyNm6az19RlHzgduCk/6n/oSjKOUVR/llRFEuY9+xQFKVKUZQqm812s4YqkdzyTFZl67byPJ5+YMm4FlXN5CrdG0FRVXXiD6IoKcBh4P9RVfV1RVFygHZABb4PzFVV9c8i7aO8vFyVPXwlkvHB4fKyv6qJbeV5ZCSbJns4wxjN+Kb6uUw2iqKcUlW1PPj5Ca/wVRQlHvh34F9UVX0dQFXVVsPr/wgcmOhxSCSSIaZ6Zau+mgdGHOdUP5epyoQaf0VRFOCfgE9VVX3B8PxcVVWv+f/7h8D5iRyHRCKZXsxkzZ2bxUSv/NcD/w34naIoZ/zPfQv4gqIoZWhunwbgyxM8DolkyiLdFsORq/mJZ0KNv6qqlYAS4iWZ2imR+BmNi0MiGS+kqqdEMslMNxeHvFO5NZDyDhLJJKO7OEZrSG+lXP1wyBz+iUOu/CWSacpkuYtu5p2KdIlNHNL4SyTTlMlyF93MYOx0c4lNJ25Kkdd4IIu8JBKJZPSEK/KSPn+JRDJtkTGBsSONv0QimbZIXZ+xI33+Eolk2iJjAmNHrvwlEsm4cbPdMGNNk5VI4y+RSMYR6YaZPkjjL5FIxg1dr39LaU7AHYAMzE49pPGXSCTjhu6Gea+6NeAOQN4RTD1kwFcikYw7wYHYaAKzUjPo5iJX/hKJJGqidd8EB2KjCcyOdHcgXUfji1z5SySSqIlGa8fh8rLneD2gsH1dftSr+JHuDqTOz/gijb9EIomacAba6LLZX9XEroN1AJhNsVEbav3uQF/hB7t/RpvTL91IkZHGXyKR3DB7jjew62Atbu8A29fl4/b2A0pYQx3OMDtcXp7ad4ZDNTYgcIU/WkE5eacQGWn8JZIZTrQr5EiGWevIqj1mJJt48t6SiMcMZ5j3VzVxqMbG5pLsG67aldW/kZHGXyKZYQQb+2hXyJEM8/Z1BZhNcVEb2nCG2fj8jbpqZB/gyMhsH4nkJjAemSpj3Ufw+4KzasIVZgWjb/f8w2XDDPNoZRbCbW802DKzZ2KRxl8iuQmMR5HTWPcRzthvK88LuAsILswK5kZ0dKKZuIzbjOVcRzqGTBUNRLp9JJKbwHj4n8e6j+D3Ba+udZfPRPrIo3EtGbcZy1hGOoYMAAcijb9EchMI538eTTriWH3Ykd53s4Ki0Rwn2N8/2nMNdQzj9ZUB4ECk20cimURG494I57aI5M4YydVhdOXoY9lzvH7c3SPRuIxuVJ451PuN11fKPwciV/4SySQymtVopPTIcO6M0bg69DG4vQPTxj0y0p2TXO2HRxp/iWQSGY17I5r0yGjfE4mtZfMwm2InxGCOd9XtSJPbVEj3nKqVxtLtI5FMQUK5a0ZKjwxlWEbj6tAN6XvVreI9450hE8rNdSNuK2PmUiimQobPVJWzlit/iWQSGGk1eLMyU0IFRPV8f12nZzzGoR9nS2kOEHgnciNuq0gr+8gVyTcP493XVLoLmFDjryhKHrAXyEGr/96tquouRVEygNeAfKABeFhVVedEjkUimUhG+6MeyaiNVcRsS2kO71W3jnkcX76rKKr0z1DnG2kM+nFOXLYPKxIbb7eV8dzGSyriRgiXWjvZ7qiJXvn3A0+pqnpaUZRU4JSiKO8CXwQOqqr6I0VRvgl8E/jGBI9FIpkwRrtCjmTUxrI63HO8nl0H6zhyycYxqz2kkY12HNGkXIY6X6OBD15tbyvPE8/vr2qKKNgWfP5jNZLjKRUxXkylAPSEGn9VVa8B1/x/dyuK8imQCzwE3O3fbA/wAdL4S6Yxo/1RRzJqY3O1KAAszU3DFBfDoRobe47XC72dcMYv1DiiMbiRJo0tpTmsLWwNeC0j2cTzD5cJox6O8XTVTIVgbzBTaUw3zeevKEo+cDtwEsjxTwwA19HcQhLJtGU8f9RjWR1uX5cvMnScbi9Qjcc7yK6DQ+6b8fQ1jzRpFN2VEtV7YHgvgBtx1YzV/TUTuSnGX1GUFODfga+qqtqlKIp4TVVVVVEUNcz7dgA7ABYsWHAzhiqRTDpjmUiM79EN6PL56SITJtzdxHgHIMeyv3CyDmMZTyTXkySQCTf+iqLEoxn+f1FV9XX/062KosxVVfWaoihzgbZQ71VVdTewG6C8vDzkBCGRTAQ3IyvjRo5htfXw3IFqnnmwlKLswFV2KAMa7m5iJBfTeAeyQ3Gjsg6h9rWlNIfl81twewdwuLxy9R+CCc3zV7Ql/j8Bn6qq+oLhpTeB7f6/twNvTOQ4JJLRciO52dHmrevHeGrfmVHnoT93oJpDNTaeO1AdsF+rrSeksQ6X7z9Snvye4/VC8iEaQu3PeM6jqV+IFuM+9X0VZadgNsWx62DtlMuvnypM9Mp/PfDfgN8pinLG/9y3gB8B+xRF+XOgEXh4gschkYyKG00xjCZvPVIGzEg882ApUO1/nEh3hxLwGHwnEPz/UCt3Y4tHsyl23N1P4a73VMqsmYpMdLZPJUPfnmAqJvLYEsmNMF4phpFeizYDJhRF2Sn87Eurh+03VKZNJEZy0xgDyaG2D/X+4YZ8qMXjtvI83N7+Ye6Y4ElxNBNBuOs9lTJrpiKywlciGWdGY3RCbTuanrqh8uGDM22M24G2EgeVrWW52Hv62LAoS1TejjS+LaU5nLhsH1apG6li19jiMSPZhNkUxw/fuojZFBtQB6A/jjZuII382JDGXyIZZyIZ72hWuNEGYd3efnYdrAu7Xaj9Aew6WAvAueZO4SJ680zLiE3XAd6rbuVQjY21ha0U3ZUS0vAGTwjB24SaMIzbjKe7ZirJKUw1pPGXSMaZSMY7mhXuSMZPf9/OiuKQwdpggxe8P7d3AH3l7xs4T2WdnfDe2UCCV/6hGGklfqOvjwbZvSs80vhLJFEwmhVkOCEvIKJR1hlJ7mCkXHjd4OkB1m3leQH7274un/1VTVjMJn7yhZXCDRScEhnqnPWVv2/gPHcszGD7uvxh2j5TaZUtg77hkcZfIomC0awgwwl5AQH7iHaFG3xsfQIIZ2h1Q2fv6fNn2fQHuHSC96dn4JhNcQFB21AyC8YMpco6e4DffjJW2SNNODIeEB5p/CWSKAi1goxmpRtJA8fh8vrz5xW2ls0LK0cQKagaSsBNN3gvvnvJ/4wSMNZg100oV044mQU9Q0kfdzhBuJuFdOuMHWn8JZIRCGfkozE8wat043a6EifAueaOkPn5xgnCSKQaAauth7/51XmKslPYWbFIuHn0sdpdXg7V2MizNJBrSRL/L57dRGaKNt5wriX9WmxfVxC2qcxYGUuWUzQxCElopPGXTHkm25d8o0VE4ScJzaCvKcigeHYKy+enh5Rf0CcIQPjwI9UIPHegmmNWO8esdp5+YMmwOMET/3oagCO1NhrsbtYXZQJwttnJyXonbu8AT967mC/fVSSqZ/VjjnWlHc1nGO2+g7OXjNlHtxoT+d2Xxl8y5ZnsW/sbLSIKV9ikF1DpKZu6oQ71Xm2iUKOKGTzzYCne/vMszU0L6Mqlb/u9zy3j2TcuUJhl5qGyBOFysvd4OVnvZKgoa/i1H6trJ5rPMNp9R3Kl3WpM6HdfVdVp8e+OO+5QJTMTe0+f+vIHdaq9p2+yhxKSaMb3wjsX1YXfOKC+8M7FYe994Z2L6gvv1AS8P9Q+69q61S/+80m1rq076mvy8gd16sJvHFBf/qAuYL/6ePTnwx0z0nFG87lEu63xHKNhsr4bN+u443EcoEoNYVNlA3fJlOdGhb/Gg0hibdGJwClBj0Pv3XWwDrMpNmQ8wbhPPc3yverWqIXntpTmsLkkW/jEh1aSyrAagVDXOfi5UMJ00QinRfsZBgvWhWKsYxhPbtZxJ/K7L90+EkkURFu4BaH9tFvL5nGuuYOtZfPE+xwuL27vADsrFg1zWxi1enS3TahiLbe3P8CVFCz1HFyRO1KNgHFseqDZmMsfTnt/vAgWrAvFRI8hGqI57mTHqkZCGn+JJAoi/diDM3qGiqyGfPVOl0/LqMlp4lu/f1tAHn0oX7++4vvBbz5l99HL2Hu8fOuztwXk4esZQrpuzv6qJtHD1zdwno3F2azKz2Bzifb4ymErq/IzArJjwjVhd3sHRKA5nAbPROTQBwvW6RgN6USPIRqiOe5kx6pGQhp/icRPpJXaSD/2UKtRzYBqOjr5mWYALrR0Alqa56EaG+uLMiPeMZxt7gh4NB7vUI2NjOR4SnJSxUSyY1MhprgYimen8sO3LlKUnYzV5gK0rJih/1eztjAzbBP2nRWL2LGxkOprnQFplPp1CM4CGo9rHIlgQzoVjWkwU726WBp/icRPpMKpkTBm9ADCQGqo3LV4Ns+/U8PS3DT/85rvvzw/Y5hLxSjLUJKTwsl6ByU5w7t17atqwmpz8f3fVGO1udhcks0jq/J4r7qVLaU5XLjayTGrnfVFmTzzYClrC1tZlZ/BS+/X8sQ9xRy+ZBvmcgrWHqqss/NedSuWclOA0Y5mVRvK0I91NTzVDWkopnp1sTT+khlLsO6O29vPhkVZHKqx8dS+M2ICiGa1GkqqOCPZxJP3LhbvL8+3sOtgHZnJpgCdfP113UXj8d8x7KtqYn1RFgCW5IRhx/vx51fw9V+e5asVxbz+SQvPPFjKe9WtwriW52dwzGqnPD8Di1kbd35WMs8/XMZXXj1NZZ2dnRXFYbV5wonQ6RPdzoriiMZYL2Kz93hJMsWgVzLr+xgN42VII2ktzTSk8ZfMWIZLHdexs2IR8bFKQOWssRPVk/cuDru/cKtTowrnzopFAXcHMKT/s7kk2994PU24Z7JSEthcks1di7OFm0Xfp73Hi9Xm4rWqZirr2gOauOiP+gSjG2K3tx+zKc6v5Am6oFsoiehgmWU9wKxdjzp2VhSHNZ4Ol5dTjU4Aqq91iuMZ4wf6djfLAAfrFQFT2ic/0UjjL5m2hDIc4YxJqOcjFQvp22pGzOF/daj4KRThVqehVtC6Ud5f1RSgsaMb8K1luTx3oJri2SnsPqr1zw02WhsWaZW5pXNT2VicFTIAOvS35mbyeAeBAR5du4DL7W7uWjybJ/71NMesdnZsLAzbz1e7s4kV8YCdFcVUNTg4ZrUHHQdx/Srr7GwuyeaZB0t580wLwVpA+nbj3dYxHOH0iqaTK2k8kcZfMm0JZTjCGZNIvman2ytE1WCo05X+Pt2IbV9XEHIcDpeXlw9budDSyVP3lfBxgyPAaBkNslGLJlSMQZcoyEg28bMvrcbh8pKZksCW0hyWz2/B7R0QrpNV+Rmoag29/YPibsJq6+HZN85TmJ2CxRzP1rJc3jzTgtPlY8OiLHp9A+w+epk1BRmcrNcmNd2Ao0ReARsnsZc/qOOY1c7qfEtI4xmckbN9XUHInPiR7pZg5FV5tBNFqDTXmbji15HGXzJtibRyD5c3b3zeaHyNq2o9Q0dPoQSEsQ6XFrn7yGUAWvadocHuFjLKkfLut5UPibMZYwyh0H32uw7W4vH2k2SK40dvfcpHDU5hvM2mWE5ctlNZZxdullONToOLB3wD2iShFX5qdw2qqnLMaicpPnzNZ7Cv/J3qVgBMcbEhx2yc8ELJQxv3N9Ld0khEO1FMRNxgOscKpPGXTFtC/ZjD/cAjtRvU3S1bSnN480wLOzYVkhQfE+BG0f3yus9c86NrsYAdGwvZsamQCy2dFGWn0GBvRJdR3rG3SqRW/uxLq4dNJtvvzOesP19fjzEYjYvRV6+7bqqvdVNZ1y7OY3nuLJxuHy0dHrbfmU9dWw/e/kFau/twewdYnW+hf1Dl9JUOFmYk097j5S/vXkRFazfbyvNwur08d6CarWW5Ya91cHykwe6mKDuZr927mFcOW9lSmhNWktrobtGL1kZqQTkaQ32zM4Gmev5+tEjjL7llCF6RDW9cXo/HN0hSfAxby3IDjFXRXSm8+G6NCPoG97PVM1xONXYYDK+2er5wtZOX/mSlOKYlOR6Alz+ow2pzkZ9pFhWrQ8Vb1ew+Wk9qQhzdff0kxsewKj8DCLwjybNo9QGvn27hrz9TQlF2Mo9tKKB07izONjtZMd/C2WYn51q62PthIzXXu2lyegAoyk7m9JUOANYXZbKzophTjU6sNhd7PmwQbiVdUkGvAj7d6OTrvzzLjz+/gpULLQHnr7ud9Mno8KU2dh2sC7h7iqZ1ZXALyhtZTd/slMrpmHYaCmn8JdOKaJuja1k6gRkuRmlkozskOCgaqp+tdiyFyrp2FmaYRZD2wLlrHLPa2fbycXY/Wk5RdgqgsOtgLSsXpAOwqThb5MrrY66+1g1Ad18/AL2+Qf72bS0QvP3OfPIzzRyqsXF7XhoATU4Pz/76Ag6Xj59W1hMfq3Cy3smKPAtXO3oBTRra49X2Ny8tkR9/fgV/+/ZFrtjdHLPaURT42r0lxMcqYjIKFQT9+i/PYrW5+Povz3LwqbvF+euprKCK5u9rCixsWJTFE/cUs7YwM6RBDNecXZ8stTuBoYK40dQNRHp+opjq+fvRIo2/ZFoxGo0dkeHi0zJcdmws4GxzJyfrHZTOTWNjcWDWh557b9TT0Y+p/a2t9Bsdbt7z+7ytNhcZyfFYbS6eO6C5djz+4Gv/wCAANa3d7D3RGDDm7z60VDRcAbjc3oNvYJBDNTauONw02N3aGSjaOeRnmvnOHyxlz4cNIgNoc0k2Z644aXJ6yM808w9/egeP7fkIgE6PlydePU2Lf2IAqKyzs7HYESCfECoIqtcP/PjzKwKurx6s9ngHRbWwJgENG4uzojKIwYbTWFEcLtMoeFvjdYz0vCQy0vhLbpgbXXndaHqmTrBhCdTLr+XpB5bwD396R8RjbSnNEW4QnR++dRG7y8vZpg5WLkinfKFF+MqP1tqYl57E1Q6PWE1rBU0QF6sZbt/AIDsrFg2bVBRFITE+hsfvXkRGskkEh5+4p5gX3q2hsk4r0PrM0jlivHcvmY3V1kNtWw9P3FPM376tGb37ls4hI9nEouxUTl/pxOUdxOUdMvxrCiysLcwKKCoLp42Tn5XMw+V55GclBzyvB6uXz0/n6QeWiBhJqBTOaAk1+USzbTTPSyIjjb/khjG6V4J95dEwmhVduObloSYKow6NHqQNZeyM2Si67zo4F/zIJZtIjfyM39DqaaAAGxZl8dpHV0gyxXHX4tmca+4kz2Lm9JVOTl/pID5W4cRlByfrHRyt1WIGlXXtVNa18051K5uKs7AkJ/D8w2UAlM6dBSjcv3QOhy+1sed4A3ctzual92spnp3KoRobbu8AJ+sdLJ+fxoWWTqy2Hhod2h1DDDCI5v55cPlcMcEAIrZh7+kjMyVhWIwkXDA2lKGO9HlHO6lHu1oP99mPtI9bJTtnvJHGXzIOhPeVR8NoV3SR8vuN2Tj68+HSCY37090YT9xTzPL5aeJcdMOypTSHZ9+4QOnc1IBxGYPAeiBYV9vcWVHM6nwLHzU4hXsENKP/cPl81hRkUH2tkwa7mwb7FUBL1wREYZe+PcCBc1ex2lz4BgZ5+oElHPxUcz1dcbjocPezY28V64uyOFnvYBBYmGGm0eEmMyUhyOgZs4bqRZ1BuGCsTjSG2mhox+qmGU1cJxpudHFyqyKNv+SGMerUGIl2xTWa9EwIn9/v9g5wqtFBZZ2dE5ftLJ+fLmQZjOML5Uo6WqsZ78OXbCKwea65Q+jlbCvP4xePrRk2FrMpju8+tJQ9xxt4/9M27lkym+3r8wOkFj5qcLJyQRrxsbE0Odxc7eylod1FckIc3b1afCA3PZHPLp8n3qNLMzfaXTx8x3yudnp4pDyPvz9Yy9fuLWHlQotwUW2/M1+Iu1UsmU1+ppkGu5s5aQl8Zukc7C4vL75bI5quG2MbuotLvyZuf8B4rKvkaLT2R3LTBO8jnN5Q9NzY4uRWRRp/yQ0TzkhPVCAuuIBINw5mUyyVdXaKspOFRs7TDyzB7e0PyFEPVs7MSDZxx8J0/wpbDSi+guqwxUn6+R38tJWa1m46Pf3UtHYJPzgMTYwtTg97TzTy0Ip5nL/aSX5mMvtONbOmwEJcTAzHrHaqr3ay53g9W8tyKc/P4IrDTZPTQ8+nrTjdPuJjY7DaXHzc4GDlQgtF2Slixf7jz6/gpfdr6fUN0mB3k59p5mS9E7MpLiB+8eS9JQHusOXz0wIax+uuqROX2/mHPy0POwGEm9j1oPCq/IyANFuj/PNIdxChUkP16z+WTJtwi5NozudWZkKNv6Io/ww8CLSpqrrM/9x3gL8A9G/kt1RV/e1EjkMyOdyMQFyolWZwwZHR569jnBC05xV2bCwUr+tG1ai3E3y8kpxUkuJj+KhhyKXjdHkDmqDo7zt/tQPQUkybOzxkpWgGZsV8C4/fXSRiDpV1dpFGmWdJ0vbp9rGmIIPi2Sksn5/OltIcXny3Br1RzK6DdUIUbn2RpvdzX+kcMlNMbCnNodNzltNXOnC6fWKcxjjHzopFwtevxzVO1jtF0dlI1924jR4UhuFaRMHbhiNcauhYuRUar0wEE73y/znwv4G9Qc+/qKrq/zvBx5ZMMtGu0m5k1RUchNSPp2vkhBpHcBBY9wnrPnLjRGExawb0qX1neObB0gBtnj/72cd4fIPEx8LAIAyqUO9P0ZyVGMeq/AxhYNcUaAVc99w2m9z0JOwuLyfrnVRf6wK0yUbXFLpr8WyuONxYbS4xprgYhd1H63n6gSXsOdYgUkeXz09jfnoS2SkJ7KxYNKx4DSA+Vss+qrneLa63Pq7NJdmAInz9OzYWcra5gxXz0yIaXONEa1zVG583TprG94yGm5VTPxMzhibU+KuqekRRlPyJPIZkahONYQ8VrI00CVhtPVqO/OwULGZTQI/Z4O301Emj2Jren9bjGxSPoOXvb1iUGeBusPd4efXjRrp7B+j0nKF8YabWjnF2E2sKMmh0uPENDB3TN6DVAnT19ot0zVmJcXT3+rSiL1W763hkVR61rd0cqrGJArG7Fmfz9V+exenyYbW5WJ1vodc3wLy0RHLTk9ixsRC3t5/3/IFegHPNWmewfaea2VlRjMVswu0dEO6j96pbKclJ5WS9gxXztYKxPccbOFRjY8OiLJFdpMcA3qtu5R/+9A7xuYSSbTDqFb15piUgmBpuAh6NAdc+nwZAFXGK0bx3LAuJiZxkpqpLaUTjryjKfOCPgY3APMADnAd+A7ylqurgGI77PxRFeRSoAp5SVdUZaiNFUXYAOwAWLFgwhsNIjEzGlzCa22l9teX2DkTVHUrXyzEKmoXaXg9m6qtofb/7q5oCqn13VixifVEmx6x27lhoCVjBHq21iaBsXZsLW7fWnav6Wid3+KUP5qUlcrVTy6lPiI2hb2CQtKQ45qVrbpuu3n5R0avLLZhNcTz/cBl/+H+OYbW5ePaN81zr7MVqc+HtH2RzSTZu7wDnWrQ7g32nmof0/nNnieMtn5/GZVsPPX0DON1e/7lplbJVftG3HRsLgrJ3tAnqjoXpAeqWegqoPgkHi97p13ioDqKa5fPT/fscv2Cq8RzMprhR3T2OpBk0GUxVl1JE468oys+AXOAA8LdAG5AILAbuB/6XoijfVFX1yCiO+Q/A99G+gd8Hngf+LNSGqqruBnYDlJeXRxZTl4zIZHwJo7mdDszHjxyY21/VJPRyNi3OxmI2hd3+iXuKueJwi05XW0pzcLi8uL39mn9fgaT4GLavKxCSw9vK8wJWtltKc/if+85wud1Fp6efrt5+5qcnUTo3ja1luZhNcWwpzeG1j5p4p/o6DXY3SfExdHr6afS7gOalJaIo0NLRS54liQeWzRUT8GeWzmH30cv4Bgb5akUxz/76AkvnzeLtC60kJ8QwO8VEW4+XNQUW0YrR3uPlXEsX64syKc+3iNV/zfUutq/L52htO4VZZmpaewBICjKgW8tyOdfcGULIbSgrRr+mut6QsY+vVsymXR+L2TTiZzZa9MwtPfgeDSOlqU4mU9WlNNLK/3lVVc+HeP488LqiKCZgVEtyVVXFPauiKP+INrFIbgKT8SXUV9F7jtejt/HTe8waNfSjyceHoWwSXSJZR9Oxv0BhlhlLcgJby+bx0vu1WG0uXv+kJWCluutgHU8/sCTgWFZbj8hS+Zpfltk3cIFfPLaGf/rial7+oI7f/O4aLR295FqS2H30Mpkpga6CBrs74C5gxfw0SuakcrjGxv+8bzF/f1AbT21bt3jPI6vzOHixlZP1TmrbenC4fFz0++ZdfYPExQyKxiud/oDtI6vzyEwxsSo/gxfevUTpnBSqr/fQ7PTw2sdNVNa1Ex+bzcl6B/mZZjzefqy2HnHd9ZX78vktAW42Y1aMUc3UKPoGUJSdEiARcSMN3cNhHEc0jKZS+GYzVbWAIhr/MIbf+LoXqIu0TTCKosxVVfWa/79/iDaRSG4CE/EljNanr9+K6wVQwRr60d6RvHmmRRiuJ+8tEcfX8/Qr/d9G/ThF2clsvzOfKw53QPqncQI0upLq2nqEKmbp3FQxfmPR1Yr5adyzZLbYh8Pl5Z3q6wC4/Hny+Zlm7l82lz/f8zFOt4+/efMCTrePjOT4APnmN89ohVvpSfE4XD6KspP58edX8Njej3G4fHR6+jnwu2s4XD6udXqw2lzYe/qovtbN3g8btMkoPRHQ7izOXHFqjWf852y1udh9tJ7atp5hFcx6oFe/7pFkr8MtGCbC3TKWO9SpamCnMmMO+CqK8paqqg+MsM2rwN1AlqIozcCzwN2KopShuX0agC+PdQySySdan74uAby1bJ7Qzh9tNojWUrHD/z/NRaFn6jx8x3zyM82szs9gbnoSW8vm4e0/zzGrnX88ehmrzcXmkmwRBDWy53i9cCXNSoyjyekhLSmOR1YvCBi/LgcdHITcc7yeBrubxDjN3ZNnSaLB7ub5d2pEeuWm4izae7wcs9pFUNnh8lLVoKVWbl0xj8vtPZTOTSPNHC/E4eJilIBJ4eMGB+9fbBMpmQA5sxJp6ejFYo5nydxZ7P2wURj+/Ewz95XO4ZHVeSGve7CQXfAEPpJRnQh3y1Rxk0zVQO14MZLPf2W4l4CykXauquoXQjz9TyMPS3IzGelLHqlXru4LHsmnbyyrF+6DEbJBgo+raem0+1sq5gOITJ06Ww8Ndjf3lc4REgn9g9prRdkpbFqcPaxoSP+/vo/5FjPz0hI419JFp6efN89odxcN7S7+/VQLs5LiSEnQtHuM49INfG+/tp/s1ASanB6W5qbh8Q1w+koHCXGx9A9qYavftXRyrqmDPR82cMxqJz1J0/8vnZfG7iOXOdvcgcc3SGyMwpbbZjN7ViLWth7SzPF8+a4iWjo8nKx3kJwQw3+5PY/t6/P5m1+dFwFwvfm7/ljb1o3FPDwLx+HSgtd6xo7xmkRr8KJ1t4z2OzbacUwEUzVQO16MtPL/GDhM6FB++riPRjIpjPQlH02v3IkcV0hDo+p5ANqjHnQ9Wtsu9HQsyfEhi4aMcsJ6Js2GRVmGEWhf+6/tO0Nzhwc6tGd1vXt7j5fatm46Pd6AcZcvtAglzidatGDsRw0OIdPc6enna/vP4HD5SIyLocPjY++JRlbna9lD3n5t1T8wqPL2hVYykjWX0NP/fo7khDhR/OXqG+SYtZ2v3ruY8vwMjlntnG/pxGpzsaYggz9ds4C//vdzAW6mUNfXuGof7ecarbtltN+xqWB4o3V5Tdc7g5GM/6fAl1VVrQ1+QVGU4d2YJdOSkb7kwa9rGTMDw2SKo/0BjLbh9qr8DL70s4945sHSYYYgyaR9hcvzM0lLMgl/dvHsFCrr2snPNHPX4tkBYwxupr61LFcUVj22oYA7FqYDiri72FScRYP9ClnJ8ZjiYlk2bxZz0xI526wJtuVZklieOwu7y0vFkpwABc2n7iuhZd8ZVhdkcF9pDq1dvRypbefr95XwypHLYkJYuSCdsgWaCNyqgkySE+KprGvHYh6KBSiKIiaoHRsLeaf6utaVy58Tv7OimBOXNRG4+FiFvz9YK1xVxmydoc+wn50VxQF1EhPlcjEWx4Ui+LhTwfUTrcsLpuedQfiOzRrfibDNE+M7FMlkoX/Jwxni4Nf1PGyzKY73qlv54VsX2V8VeS2gZ4Pohj/ce4zb6Tz/Tg2Hamw8d6Aaq62HL/3sI6w2LY1xa9k8Npdks64wE2//IDs2FfL8w2U8fre2mm+wu3np/Vp++NZFvvLqaV589xIfXGyj4vkP2HNMK3Z6r7qV5/zCaH/3nxc519zJXYuz2V/VhMPl5av3lvDo2gX4BlWudvbyxtlrVNbZWZiRjMUcT5PTQ1dvP3v/fA3f+9wyGtpdVDz/AR9cbOOl92tpsLvZV9VMbVsPObMScbp9HDh3TRh+gI3F2TyyKo/NJdrjdx9aSp4lCafbR1IcNDs93HvbbDaXZPPdh5byrc/exut/uZ6nH1iCLvFgNsXygz9azoZFmZTOTePbny3FYo7H4xvkW6//jhffrRHXVQ/Cm02BDdiNLheHyxvy8xjp8w2FLvsQHG8xHtf4HRvpOzkV2FaeN+XSSkfDSNk+v4zw2q/GfTSSCeFGbk+jbagy0g8g2Neu94N1uLwBYzJuB1oW0KNrF3K9q5cn7ikOKDB6/uGyYYVcprgYsT+jPo8u0FZZZycpPgaPb5CBQVX8eH/hl0uoud5N9bVurWOVPxawpTSH/aeaxf/1dM5Gh1v4+xvsbp47oI3pSz//iE5PPztf+4ROTz+r8y00Oz0cqrHR6dG2z7UkkZYUR6ennzUFGWxfly+kpfVcfj3ryNMPMMjz717i0+8P5ViE61ewsTibH751kcwUE4/emc+ug7WcrNcE2/SiqUgr61CfAQwXtgv3uUWrxDrdme4ZRqPO9lEU5YCqqg9OxGAkE8ON3J6Ga6gSyRCEIthfr1eQBlfnhjISbm+/ULPUC4yeuKeYJ/71NMesdtYXZfLUfSX86K1PcXsHsNp6KMpOCVKvTKd4dopfw76dpPgYVhdkiONsXjKbN8600OnpF5NDUXYyW0pz+POffywMP8CDK+aRmWzC3tPHyXoH89ISyctI4ol7ivnKq6fp1Kw1uWmJrFyQRJ7FLMTf4mNjePqBJRytbRfbrS3MGKaL84VXPgQgKU5hXnoSLR29/N1/WR5wTY3X33gNt5TmcLTWRot/8lhTkMHCTDMtTg+r8jOEC2ykiutQk7v+fdB7AETrLpruhvJWZCypnsFlgZIpjNG3O5ZVV7QrxJF+2ME//i2lORy5pBkoo9a8jtPt5c0zV7WG5IrCzopFYgxrCzN5+/x1kd1Snp/ByoUWkhPihHtIX/XrLoxdB2tJN8dxV/FssXLfV9WMrbuP4tmp7P2wkdQE7eeQlhTP8vlmfvBHy3nzTEuAe2bDoiweWZXHe9Wt3L9sLu9Ut9Jgd7OtfD4fNzhEZ6/0pHiWzU9nX1UzpXO07JoMczxXOzQDvCo/g2anm03FWWxfVxBwjV45bKWtR3OfxMTG8OCKXDzeAepsPQF3SpGUNSvr7GIsoKWMHrPaUfx6Q/pnoFcyGwvmwgnhvXLYKnz3wUHkm2Hcp3uAdaoxFuP/ybiPQjJh6L7dpx9YMqYfTKS0u7HeyjtcXp47UM0xq92gzxMXkOURXASmj1/Xn1lToGXGbFiUJQKzRtmBYDfTK0esOFw+3jh7VewzLkYLoPr8jda7+7SV+PWuPhbNTuG96lacriEZ5IQ4Bbe3n2+9fo6T9U7WFGSIieFUYwfffWgpbu8AVQ0OjlntNLRrekJ1fl2hrt5+HG4fX//lWR5cPs+fmhonArZ6DcKW0hz+8YiVdpePpLgYoXMDmpCb3mBGD56W5KRS8fwH/PjzK0gzx3Pkko2Hy+dT19YNKJQvtICiGX9j43pd2ROqAyp2Q2G8nvp1Dhe8nSime4B1qhGV8VcUZaeqqrsAVFX9s+DnJFOXSAY6Uv6+8blwqpvhmqqMlMet+7bXFFjwDajEx8YE1Au4vQN4vP0U56TS6x2gprULe4/XH0zU0i9LcmZhNsXxzIOl4nhG2QFLueaWOVrbzpbSHF7YVsZXXjtNdkoi3b39ON1efAMqFnM8X7u3BN/ARVE4ZTHHU5iVwg/fuqgpcfqP2tevCmG2zSXZIsUzLkahsq5d3HFsLZvHcweqhbvH61f63HLbbM63dJGWFI/THxitanSIfepCbG7vgJbF5PIxL91MSqKPBrubdLN2Z6MXr+lKmhXPf4DV5uKxvR9TOncWx6x2keMPiLTTTP9Erl8v42Q50vciOEU2WPLhZnArxg0mk2hX/tuBYEP/xRDPSaYA0TbIjjZ/X/+xhVLdjLa8P1TTFXtPn5BN+JtfneelP1npjwfEsutgLZtLslk+P42T9VpKZZJJq641m2JxewfYe6KRK44qdj9aTlF2ClZbD996/Ry+AZVl89J4/2IbzR0envy3T2ju8NDlGaDL4woYl9Pt4/ClNlbkpeMbGMDWrQVaa1q72LAoiy6/gderCWanJjDfkkhxTiqtnR5OX+mkf1AVdxF7jjcYevguYmdFMQ3tPRypbeePVy1gT7+WYRQfq7C5JBt7T58YS3dfP/mZZpxubQxJ8TG4vJrh1wXe8ixJ5KYPNXn5wW8/JdkUy6zEOBwuH/PSkyjKTubbny3lkyYnukhbuIlad49Zyk0R3Unj3WBlLMi4wfgyUoXvF4A/AQoURXnT8FIq4Aj9LslkE+3tcaTAnvE5/UdntfVwrrkjIGgYbXm/Mc9b39+L714Srx+z2oUPeVt5HkdrbZpufk4qGxZl+v3USkAQV29o/twBzW3x3IFqUdilr6ZB0+nv9PSTGBcjqnB10s1xgMLuI5cN5xsv9rM8dxYAcQr0q5AQF8PpK52cvtJJTmoCoN0V9A+qLMzQRNS0XPxMEceoeP4DnG4fX9t/hp8+ugqA4pxUdh+5TGKclkmdZ0kS6py5bT1i5W61aW6lrl7NJdXk9LCwUwvkHrlkE26n/EwzXb39XO3Q9H9qWruFUmkwkbJ5wn0HjEgjfGsw0sr/OHANyEKTXtbpBs5N1KAkN0a0K7NQP+JIP2w9V9vbPyjcDnqwcqQgnP5eo6tASDR4B0gyxYjxaj11LSIt8ydfWClSNo3FWrsfLRcBS9AknOvaekhNiCUuNoa42BjKF2awriiT7/+mmm9/tpTjVjtVjQ56vf109w2w649vJ80cz6lGB4VZKZy/2snpKx2sXJDOxuJsPrRqRVMxMQoMqGwumY3V1qMFT/117+aEWFx9A3xm2RyS4jVpiTsWZojGMeuLsvw58z4+bnDwsy+txuHy8stTTThcmtjbz/9sNXuON3C4xsZT92lSGDv/7RNMcQrtPV6+ef8SfvO765TOTeWR1QuEnMPKBekkxcfy1H0lfNzgCFBLffmDOnYfrcfe08e3Pjvk2hlNqq5R3toYFA7HWKRCJJPDSMb/iqqqjcCd4TZQFEVRVVVq7U8holmZRfMjDN5GX73nZZj9gVol6lWg/t6SnFT+9KcnKJ2bxuN3F/HkvYsDjqdnlADsrChma9k8MYY9xxvYdbCWVz+6wnf+YCl7PmwQRsnh8vK3b38qRNn0NMr6dhe/lzuLrBQT/3DYyjfuX0JtWzenr3SQn2nm7fPXAZXKOjuFWcnUtWnFY5dauylfaOEv717EuX85Ra9vkHlpif5evAo7NhXS2unhjbPXcPUNsKYgg0dW5fHaR1dYU5Chafo0OoUUxIZFmdyx0BIwgb2wrYwn951h46IsXvnAytsXrtPV28/b56+RZIoVef4A71S38pMv3C4+K13OYWNxtriGK/3NZYruSvErjWoFVXojmXDfj+CAvvHOwNjIPjgoPJr4kI4M2k4dRjL+hxRF+XfgDVVVr+hP+nX8N6DFAg6h9eqVTCOi+REGb6Ov3sei4KhLMV+2uWh0uKmssws9fN2ItDg97D3RyPt+ffui7GSudXjYd6oZu8tLUrzmImmwu4U2jm6U9lc1CVeN5uJR6O1Xcfqza3r7tfXJn/zjh/T2q8xKjKPB7mb30cvCtXPwYptwr/T0DbD7aD0XrnbR68/xt7u8Qqs/LSk+wF9f09rFKx9Y2XeqGYCT9Q7e+t01mpweLOZ44bY61egMSMF0un28cfYaRqqvdYsuYQCJ8THDUiuN2vtGhmIwAzTY3RRlJ/Pdh5ZGnOwjaSjpBXLBQeFQ79PfA+G7soWSCpF3ApPDSMb/frQuW68qilKAJm2VhCb58A7w96qqytTPaUg0rqFIeiuRsoNCo/lI7irJ5nxLJ7buPtElSjci+ZlmsW1+phmrzUVrl2ZsD5y9yv99bA0e7wDV17p5bEOBWPnrY7L39FHV6OR6Zy9XO3uZMyuB+NgYVi6w8MbZq8TFKGISMJti8fYP0ts/iNPtY2fFIl79aMg/nmyK5b+szCXRFCfSUfv6B5mVGEdaUjxP3FPMX/7LKbF9h7ufd/29dWclxtHV24/FbKLJ6eEPls+lyV/hC7C+SJN0drq9HK21cba5Q7SKnJeWyHcfWorFrF3LN/x1BvmZZtzefpHnH+6OS7+W64syA3R7XjlsDTvZB3++xn1nJJvCpoFGig+F68oWPG55JzB5RNT2UVW1V1XV/09V1fXAQqACuF1V1YWqqv6FbvgVRbFE2o9k6hGNdko0eit7jjfww7cu8vJha4C2i1HrRXtOEx776pbFJMVrLo3n36kJEIl74eEyNpdk84M/+j1WF2gTgylW+4pe7ezlvepWHr97ERuLs1iely6M0pd+9hEN7S6STLFsLM7mweXzgKF8/e3r8inKTqZ/UCUtKU68lpoQR1pSHH/9mRJONTpp6x5aybu8AzQ5PTyyKk+ke6YmxDInTZNrfu431cK/Pyc1AYs5njUFGWxYlMnnyrTjry3M4OkHlvDVe0t45sFSMbkp/mCBXoz1h2VaL4JH1y7kwFc2Ct+62RQrrsl9pTnsOlgnNHeM19Z43beVa/pAx6z2AN2eUDo0+nuBsN+FSJo9kb5D0WrzTHd9nOlM1EVeqqr60IK/oTgIhNP+l9wkbvQWemzv11bSF1o6xQrZWKzl9g6I1Ee9UGtpbhrHrHaW5qaJ6tunH1jCyoUWYdD1/rdxfuO/ckF6QHYRaIZD78BV3+4SmS87NhWyvigTj29A6OlYbS7yLEl8/6FlfOfXF2iwu7H5Ddrrn7QEuGJSE2IpnZcmAtS6ke/uG6C7VUsV1TT6NSPe2t2HCrx9oZWdFcXctVgzvuuKsvikycme4w14vP1iBV9Z1y6us34e3/vcsoDrr8c3NizK5Cdf0H5amSkJAdfAeG31656RbAqobo5EqFV3qB4Kwf0PxtNFIzOHJo8xd/IKIpTev+Qmc6O30LrBcXsHAgKx4dCLrnZWLBLVqcGuALdIfcwSbovH7yoSBUc6wYaqJCeFk/UO8cXaWJwlqo3tLq+QhtC7Va2Yn0aD3c3KBel0uLSOWf4QAdf9fvomp4efVmpdt3LTE0ULxD+6PZf6dhemWIVLbS7uWTKb9h4vOzYVsqU0hxanh/NXO0UQOSUxhsWzZ7Htjvl870A1Ht8gcTEK/YMqHm+/CPJ++43zImir9wm4r3QOmSlDxVZGo6trFbn9rSABKuuGUmCH+9X7RatKY/ptqJz+4DqMcLIfkfz/0kVzazFexl9m+0wyRvfJaG6hHS6vkBfwePUc+NAfZ6hVob5qL8pOCaj2DFac1I2PxztIbVu3qMy12no4WmvD3uPl/mVzeOn9Wrbfmc97n7YB2qp6w6JMQBFNyPW7jJYOzbA+VDaPo7Xt4tgf+Vsj6lpsS+ak4vb10+Hup8vjFe0e951qpqWjl78/qMkux8VoU80Hl2x0evqpvtYFKuz1K37mpieSMyuB+NhYTtY72FicxY5NRfzyVBMtHb3+JisKVpuLuBhFBKjTkuIozDJzx8Ji0cDeeD23lObw7BsXxJ2T3u7yVKOT0rlpbCvPG5ZyqV/bE5ftnKx38sSrp2np6BUTt7598exUdh+9PCxIH072I5L/X1bY3lqMl/GXTDJGQzyaW3L9fQA7KxZF9L9GWhUGE6w4qU8CR2s1WeWzzcfZ//g6njtQLUTIDl5sxWpzcba5w5/JowVAAXYdrOVUoyac9ujahZjiYth+Zz57Pmxga1kuJy5rhrOtq4/nPreMv/i/Vfj8sgpVjU66erXq2XMtXQDkpiexY2Mh1dc6eWxDIf/9X06Jxif6Ct/p9lF9rVMUmbV09NLSod1F5Gea8fgG2X3kshhjp8dHa5c2IfUPqkIZ1GpzsffEFZ5+YInof6Dzw7cu8upHV4TLSisO0+SdK+u0VM6MZFNIHZ6MZBNxMdoEo49Ln7h1qev6dhc7KxYFNGwxfmYjBWSjfU0y/Ripwve3wF+qqtowwn6k22eSiXZVFip3/2htO6VzU0XBVji/rp6rr7sYIgl7hfMVbynNYdvLx3G4fOzYW8WPP78C38AgpXPTAlb+usskL8NMZZ2dzSXZ5Fm0vxPjY/jZl1bzymGrMIjfuP824W7Z82EDy+bN4pMmrWJ2fnoC1df7ua80BxSFCy2dPHVfCX/7tqbnU5iVwpI5qXzS1MkfLJ/L3HQz1zo8fNTg4LENhXzS1EFhVjLvVLdyvUsLCjfY3aBqGj/ZqQnsq2qmq7efN/1pm4lxMez649vJz0oWd1Z6ho9+DQ9fsrG+KFOs+LVMn2UBNRX6NQ6nw/O9zy3j2TfOU5idgsUcLz7DZx4s5YpDi4folcNGpCEfP6ZruupIK/+fAe8oirIH+Dt/0DcUFeM7LMloifbHHLx6f+1jrSl66bxZAaqZumiY8Yv95pmrfhVMlcq6dvZVNWG1uYZpu0OgnIN+zH1VTex+tJz9j68TgdqPGxz84rG1gPYjWluYSV6mmT9aOR+n28vvmjtYPj8NV1+/WGJUNTr505+e4LENheSmJ3KoxkZ2agIVt+Xg7b/GoRoby3NniWKvZbkWuvsGqWp08ONtZRT9/m28ctgqhNzeqb7O9a4+5sxKoM7mIt1sYm56Eg12Nz+trBftFPXGLQALM8z0+jSf++xUEzHAIEMOs0fvzA8w/FvLcrVaho6hpi6nr3SwY1MhLR0eGuxurnb2iqbxwRXRRtE6I0XZKeL6BT+///F14o5hz/H6kEVXo2Eijdx0NaAwfdNVR+rktV9RlLeAbwNViqL8X7TvuP76C/5HqfMzgYznDyP4DuGCv8G4/jh0E6c9BurAaKatdG4q8bGKCDaGahCuG6/l868Cqsjbf/aN82wszmb3o+W8eeYq9h4vP/hNNUmmODzefnYfrRdukGCDa4qLCVgpn2/posPfGevt89dFgRYg3DtF2ck0Olw0OT00OT382c8+5j/+aj3byvNEMZnO9a4+rnf1cfpKB3mWJHZsKgRVm+icbh+zkmLp8gyQZ0mi0eGmplWrBm7rHkqDTIhTeGhFLo/fXRTgUjvX3MmhGhsLM7R0Tz0IjaryT19cxZ///GO/60cJ+TlFItz3w5j5E67oajTsOV4fsDAYT6arAYXpGwuJxufvBVxAApqg22DkzSXjTTQ/jGgniOA7hO99blmAPk5w5Wjwo7561CSRL1CYlcyDy+cOyx+3u7ysL8rE6fay98NGHloxl65eTXVSPxddvVNnjT+3X69M1SWJQQuaPrahkJ9W1ovnOjw+SuemcrndxfqiTN660MqaAgslObOoae3CN6BJMK9flMXVjl6anB4aHW6e2neGZx4sZW1hFmsLM3G6vOw9cYU5szShtutdfTQ5PVRf7eInX7hduIr+YqN2/MIsM5bkBK51ejhZ7xCN3eekJXL6Sgdz0xPZX9XEqvwMNizKojArmcT4GJbPT+f2vHS+/5tq7lhoYV9VM0mmOIqyU/inL67iuQPVbPXXCICWzbPneMMwf30wkb4fIxVdjQ4l6HH8mK4GFKavC20kn//9wAvAm8BKVVXdkbaXTAzBP4xQYlu6AbD39FHb1hO1EJfRnRBqAglOG9TRCpTaqaxrZ2fFIpxuLVVxaW4aSfGxQiWz3t/QRM+gqWvrFqmJaeZ4fnGiUaRDLsw04xsYpMXpIdkUy8N35FJZZ+dqZy+dnn7+8ehljlntxCgwqGpVuLVtPfgGVKy2HjKS4/nvdy2iprWbvScamZ2inUNbl4cHls3hbHMnoHKoxsal1pO0dPSyckE6z3y2lCO17QEduwB8A1rV7eN3FfHyB1YRh6is05rLNNq1cyuancI37r+Nnf/2CSsXpOHxDbLr4EU2LMqisq4d38AgJ+sd7NhYyJ4PG7DaXFQs0Zqxby2bh8Pl5ev7z/rvOBr46r2LDQFe8Hj7yUxJEKJtRvE2Y/vHiTac4SQlghnLnep0NaDTmZFW/v8L2Kaq6oWbMRhJaIJ/GMYm5rrh1n+QR2s1g6y/ZkwnNBqMYBwub4DBiSQdYHd5udDSycoF6X7pZCWgM9fOikUiQ0bXwun09FOUnUx8bCxWWycvvV/L2sLMAPGyFqdHSDG3dvfR3OERWT/rizJFcdig37Hu8g6I9zY63PT1q3xt/xn2P75OZBUBfFDTTm+/ljqaZ0kiz5Ikjnv6SgcvvV87zPBbzJqs857jDaIzl87CDDNbSnOwu7ycrHeyIs/C1395VriWls1L5+kHlmDv6aOyrl300q2+1kllnZ2M5Hh6+weFT18fB8AbZ1uwJJs4VGMjPSmeDo/P33e4XoisGbucRWswx8OtMta4kmRqMpLPf+PNGogkekJlfug/TGNfVghsuB3JYOw53iB06MOt7PTndV/5mgKLSA11ur14+8+zNDeN7esK2L6ugD3H67XaAQWS4rVGLE63l2ffuECeJQl7j1dMIGsKMvje55bx2sdNfFxvp71Ha2iSn2lmdUEGVzs8rCvM5M0zV7ne1UtBhpm2nl68/Sq+QU1q+fAlGw6XjzfPtGDUmV2Vb+GKw0P/4KAw+nNmJeD2DnD/sjl8+a4ils9v4eRlOyfqneRnmmmwu9lckg2oAYY/Nz2RRodbk5owFKvdv3QO//WnJ/D4Brnc3iMqdmvbekRs5Gv3lnCtU8tIumzrCUir/c8L1zl9pcOfZqqyuSSbQzU2NpdkB7RtXFs49GjM2R/J2N5Mt8p0duHMJGSe/zQkXOYHgMVsYm1hphAG03+Auoha+PRMzVresdAi7gysth6efUPz61uS49lalgtoLRRP1jspyZmF2zvAyx/UgaJQlJ1C9dVOGtq1LJ6tZbm8eaYFUIL81ip7T2gisavzNVmotYUZ2phVSE6IY2fFYr7/m2qsNhdOt5dOTz+NdjfX/UJvzR1uUcS1YVEWs5Li8fgG/To8Wr/a+elJNPubm+hCb3mWJCzmeBEQTk8y0en2ceDcNdYXZXKi3snq/Ay6en1svzOf5XnpgHZHdfpKB5nJJgqykgOa0uj8tzvzqWrQ2jD+4Lef8siqPPIsZtLNcVhtLt4+f52sFBNZKQl896FlQop6f1UTX7mnmG+/cZ7s1ATuWjwbgOLZqSSZYrGYA/soGwlVqTuS+26ikS6c6YE0/rcYxpW+nn755buKRE58qL6rui9fV4HU0QqwdDcSHK21cfpKJ4+uXcjTDyzB7R0ICNjq6Kvb4CbsT967WBQv6SyZM4s7i7IAlZcPW9l9VIsVnGp0BhRJAWSnJtDnG6CtxysMP0BhdjKHLvorgrt68XgH2LAok8LsFPZ+2EhWiomrnb0iR99ijhfvPdvsFMVl3v5BNpdkU1nXjsPl4zu/vsAHX98sMltOX+kQk8Z71a1Yyk3Cpaa74vR4xOkrHdS2dovzz7MkcbZZa0e5YVHmsFhNRnI8DpePJqeHl96vFav+QzU2zCZNWyi4OOzEZTvL56cPq9SNJNMxnVMqJeNLRFVPyc0hknLiaNFVHfX0S+Pz4ap39VJ/owokEKBECWDzpzTWtGrNQbaWzWPHxkJWLkhnee4slufOYk2BhW9/tpTNJdk8cU8x64syAS1oqReGaXINGonxMZxr7mDXwTqRbpoYH4PHN0i6OY71RVk8unYhGxZl8uNtK0QbRgVITtC+vodrbNxZqO1TVWH30cv+YrBYnn5gCWsLNV2dlATNiFrbjH18Fb5aUUxGcjxL56VyqMZG/6AWS9hUnC222lqWS3qSNmkszDAHaN3s2FvFoRobcTEKg6rW0H3HpkKeuKdYqIjOS09ixXztLqd0bhowJMmxpiADh8unpZduLOSZB0t5+oEl4nFbeV7A52f8jEEN8bmqQY+Bn/UP37oYsr2jPqbx+i5KpjYTuvJXFOWfgQeBNlVVl/mfywBeA/KBBuBhVVWd4fYxE4jksx3LSm35/DSWz0+P2ucazkdblJ3C63+5nj3H6wGFuxZn89L7tRTPThHjzUwxBfTL3VmxiPdr2jhUYyMvwywqUM82d3Ky3oHbO0Dp3Fn4BlRKclI5cbmdcy3d3J6XxlP3lWB6v5b1RZn88K2LdLj72XuiUShbOt1eEuNi6EIza66+QZLitWBvWV6auEvQG7l0uPo4+Gkrj20oEP11e/oGcPk0456bnsjJegdxMQoOl0/49tu6fWwuyearfo2cZ984T1dvPx0ezUD/85dWiSpcvdBNl13+3oFq/u6/LOcPynJ55bCVTk8/GcnxfOP+JeRnJZNkikHXKXr2jfNU1tlZU6BNCn+0MlcU1oHmwjM2u9EL5kpyUqlvd/Ho2gWiT7ARrcl9XMjPfyR/vAzWzhwm2u3zc+B/A3sNz30TOKiq6o8URfmm///fmOBxTGki/SBH+2MMJ9gVTS64EeOko7s99ArcLaU5JPnF2raW5RoyjMDjG+Sw39Xx67NXsZhNws2zuSQbp6tP+PvjY2M416LdRTjdWn/bQzU2jta2M2BYtFbW2dlzvF7T3O/x+t+r4BtQ0RN+9FRSvZFKfqaZDy87aHJ6+O6vq8Udg7FwLEZR2FlRjMc3wDGrXTRUWbkgnWceLGV/VZP/3IbcVPPSk7CYteYobu+AMPx6MZXHNygynLaV5wnX10vv1/L8w2WYTXH88K2LnGvuEPtdMd/CPUtywgZwg4P2uosoNsbO9z4XXks/FCP542WwduYwocZfVdUjiqLkBz39EHC3/+89wAfMcOMfyfjqAdpIP0ajod5Wnofb24/bOyC6PkUbFDQ+pxucI5ds/tz9GCFk5vYOYDbF+o1YJ1+7dzGNdq2KFlXlu1uX8vgvqnC6fXi8/ezYWMDZ5k6Kc1KpahgqBs9Mjuf+pTm892kbX95UyGeWzQ0QOYtVoGh2MpdaXXi8mv6PbjBNfuO/aqGFs82d3FmYydsXWjH5NfYT4mJIiFNockJhlpnq6z3kWZLY9ce386tPWnjzXAtNTg9mUyzb1+WTFB/LicvtnKx3srE4SwiwPbp2Ac1OM+Z4herrLq52eERjdKMQXqh8e73CVk+h1T/PE5ftPHFPMcvnp+HxDpLkz503Nl7RH41qrVvLcllb2EpJTirf/001P/78ihG/W6O9c5zKwVoZrxhfJiPgm6Oqqt4U5joQVh1MUZQdwA6ABQsW3IShTR2CV3+6Lzb4ix8qP19fXZpNsWLluOtgnd/Xroo0zF0H6zhyycZLf7KSjGRTQKBwa9k8Xv3oisjdB4T/HlRW5WeQkRwvjqunUCaZ4vjt+WuiXaLej/ZkvYOT9Q5WLkgTY69qdOJweekfVPlpZT1z05K41jGU9z+gInLkO9xevvn7t9Ha5eE3v7uOyy8/ff5qFx7fIG3dfSJFExDSC3qq5LNvXKCyrp23z1/ncruLDrd2d7ClNAen28upRiclOamsLcwKCHrbXV4a7G6W584iMT6GJqeH/aea2bGxQLhcrLYeUTW8pTRH/F2UnTKsuYqeUrt8fjpP3lsi2ivqnxUEVuXqn22wbPbdS2aH/N5oEt2am05XB71V3Di30rlMBSY120dVVVVRlLC9AFRV3Q3sBigvL59RPQOCV5Hhvvj7q5pEZkg4SQaj+6Gyzo7ZFIdeon/MaheGSV+Vn2p0AKowpMvnp2Hv6cPp6mNNQQa351l4bO/HOFw+LOZ4EahM8q+i73n+EABxMVBZ1059ew85qQm0dvexbF46y/xdsrz9g3h8g8SgpZjufO0T+vz+HgW/X99v5N+pbuWbv38b56920T+oEqtok0NPn+aq6fUNBBRqzZmVwH2lc7jc7qLT7UMPflY12jl9RQssN9jdvHnmqt8F0y4qd/XJ9ct3FfHiuzXAkFZQXIyC0+2jtq1H3FXpInVQDRBSennoMwsMxo7k8gv+bEdCn+iBkDIdRqbbSlq6pMaXyTD+rYqizFVV9ZqiKHOBtkkYw5Qn+PY73Bff+HxwTrfxbuH5h8sCpIUBPL4BLrR0ikDiMatWfVpZZ+eOhRnsrFgEKFQ1ODjX3EmL/5itXb04XD6S4mNwun3sPXGFR9cuINMvp/D9rcv4638/x12Ls3n7QqtBax4S42P51mdvC2goPgjsq2qmKNtMp6cfc7yC2zc01ytoOj57jjfw2IYC/tevzouYgF6t2+UZEnXLsyTx8z9bLVJVr3V6hG/e7Q8S6IqfoPLMg6X4Bi5QOjd12PXdvq6AU43a5JCfaeY7f7A0oHH8fn/Atyg72VB0N1x62bg/YzA2kpsl+DMPdecX6j32nj6qr3WHrEUwMt1W0lPZJTUdmQzj/yawHfiR//GNSRjDtCPcF9/4vK7588Q9xXzc4BDds1796AqbirOxJMcLV4XD5aW2tZtjVruoCNYDt4lxMSzKTqbOX2DV3eslNSGW7j49BTKL+RY389IS+c/q63R6+vn1uWsBCpwe3yDHrXaykuOJi40lwxxH9fUeen0D/OA31Zxt7uThO+bz1vlrYr/dfgMeExMDDBCraOtjXc7B4+3np5VXGVTBFAOJpjhWLkjnj1bOZ1F2Ml//5Tl6+wd5YNkcirJTeOKeYq443Hy1opjXqprIyzCjl/6WzEkN0L+/Y2E6oOB0B66GM5JNfO3exVzr9PDjz69g5UILy/PS2V/VhKXcJGIsoGAxa9uHK8CLtNIOpddk/GyNk2W4frv6ezJTEqisq+e96uE1HUaCewZEO1bJrcFEp3q+ihbczVIUpRl4Fs3o71MU5c+BRuDhiRzDTEIvNLricGO1udhZUSzSHxvsWitCsylOxAGMkszL57eguyJ6+wd59tcXhK6OzoZFWdyxMD0gZgCajLHTraVBbinN0bJhjlgN7/cRH5sEaEZOjyFc7fAIww8QHxcT4LcfCHL09fYPkpYUL1bt3t5+3jh7jZ0Vi3j9kxaR0ZNk0r7WHzc4sNpcvFbVLLqFgRYH2Ptho3DxvHLYKs7lVKOTyrr2gAKpl96vxWpz8dL7tfzsS6tDrJgVUewWqfdxqAK84M/O6C4yEurOL9zKPVr3SHDPgFBjDd635NZhorN9vhDmJdn8ZQLQNX/0lf+28jy2ls3jb351nqLsFCzJ8cMMw5bSHN480+J3bdjJTU8kRlH4/kPL+M6vL9Bgd5OWFMcj5Qt4/O4icddwqnGoNKPPH9xtcnp488xVnrx3MT99dBVPvHqaTo+Pnr4BmpweVudbeOq+Eq782yc0OT0MDA5Z99SEWF76wkrePn+N3UeHZJsBZqeYKMhOoeZ6F6evdLBhUSZu74CoL3C6fAGum61l83jx3Ut4/BlOHm8/lXXtpCbGUpCZTJ4liZ0VxZTkpFLx/Ad8+7OlwsXldPVRWQdOV59wswRrKQ03rtp56IVsoYLye47X4/ENsr4oM2T/g3CdunRC3fmFM/LRukciTRLSv37rIyt8byGKslN4/uEyYfh1A2SKi+Fzt+fi8Q7wlVc/8csfay6L96pb8fgGhU+7paMXU1wMs5Liua90DhsWZbLrkds529zB4/+3CqutR0g0bFiUye15aQFjePVkI6cbnRy+ZCM/M5mevgEUv/x7S4eHX32ipVgmxMLVzl7Szdr6IzMlgTS/7MLKBenMTtW09ZfnplGQncLJegclObPYXJLNdx9axk+3r/I3TIdDNW002d1ctvXwq09a+K//eJJdB2vZfbSeqgYH9y+bS1pSHN29A5xr6WLviSt4vP18bf8ZrDYX3/9NNU/eW8L2dflc9ktQH6qx8cO3LvLyB3W8eeYqy+enYTGbQrpDtq8r4OkHlgAKP3zroj/bZgg9CLv7yGXK8zNCVloHazIFE6ryVjfyY3XLRHr/je5bMvWR2j7TlHA+2WDXQrArCGDH3ir2P75ObKuncG4qzqbDfRWrzcWTr52h0eFmZ0WxuAMAzT3x/MNlACJ1Ue+VC9DW4xW9dAFRHwBak/FDNVp8v28AMpLj+e4fLOVZ//71ilcjifExot2iJTme731uyCXywLI57D5aT5PTw1deO02XZ4BgjlntKO/WiKbsOu9Ut+Jw+chIjhf58vqkZjHHi9RVvTIZ8GdJMcwdohvKF9+95N97YLMTY1wgXGOWUKm9xs9XumEk4400/tOUSP5ePa1zf1VTgCvo7fPXeKdaEzEzKkSuys/A9H4tiaZY0RZxTUEGhdnJeLz9wvDnpCZQPDtVHFNbhaosn5/GueZO4mMVbpuTwl9sLOL5dy+xqTibXl8/+061kGyKYXFOKgsykmlyekhJiMXh8vH8u5dwuDQ5heLZqVTW2Vm5IB1bt9ZNa8mcWZjiYkWDeauth7/5lSYd/cjqBVRf66Kyzk5+ZgrnmjsxxUBBdgrdvf2i0rZ0bhqlc9N46/w1IROtSzYbfe/Gaweahk9JjnbXsabAIiqag4vodMI1O8lINo3Y9nCk1F7phpGMN9L4T1NCGQN9tai1KBxq3KI3dUkyxXFf6RySTDEB7/u3jxq1JugpJnZWFKP7sPedaqaurYd5aYlc7ewlP8vM7qOXSTLFcNfi2Xzx5yfp8gyQnWwiz5LEX3+mhNc/aeEXJxtpsLuJjWnnsQ0FvP7JVVzeQT5p6hSr55SEOHr6tNz8WYlx5GWYeWR1HpkpJqxtPZy+0kFueiKJ8TFU1rWzsVgTZ9N73R6z2qm+2knp3DTuWJjBXYuz+at/Oc21rl6aO9y4+gbJsyTxwLI5rCvK5Nk3L7ByQTpz0xLJz0wmI9mE2zuA0x1owJfPT6d4dqpovGJJTghQMD3X3OlX0tQCvGZTLKvyM3jp/VqeebB0zG02R0rtjdaPL7N0JNEijf8NMhk/tnDSDKE6cenbGuWXd1YUiyyXH751UShP/md1K6//5XrROOTAuWvCfVOUnSx0/EHh6788K9wsNpcXXIhUy8Wzk4mLUbDaXHz7jQuiKGtuWhJ/sbEQRVGEFhBAV28/ez9sJDc9iW3leVQ8/wGguYnONnewY2Mhbu8Ae47Xi7uQlIRYkcHz9ANL+LjBwTW/1r+rT3MzNTk9XLjaxTvVrTQ63DQ6tPd+1DAUrH7uwFB2jd5w/ekHlvCTL6wMuMYOl5dzzR0cqrFRPDuFzSXZeLz97DpYa5CdDszUCSWXYfxsIjHWnHbpHpJEizT+N8hk/NiMx9QNi72nT3Ti2lKaI7JO9G2NrRWDq0utbd3sO9VCp6efb71+jpP1TlqcbrJSTCQnxNHW1YvV5sLjHWDHpkK2ls3D6fLS2u2hp3eQOAX6VUSq5fWuPmHw+/0ZPQMqNHd42PNhA6VzU6msa2deWiIbirNotLtYMd/ijyHU43T7SIjV4gIn653UtvXgcPnYWVEsXDY9fQOsL8qkPD9DnEeL083Bi21k+msLTl/p4JjVzsN3zOd6Vy+9/tjDmoIMSnJSsdp6ArJrggvmjJ+nUabB7R0QEg1PP7AkYOUf6XMyPk4UwceRdwKScEjjf4PcbF+s1dbDkUs2dmwqDDDuawq0Tl2l89KEKJkeZNRFwUDhjoUWtq8r4HSjk6//8izf/mwpdpdXVMo2ObRA58GLbbR09AaoYF7t7OWdC9dJio9l74lG1hRYaO3qE6vxNQUW1hZm8rvmTt6vsYk8/ZzUBDJTEuj2d8f6aaWWDVOYncyX7yoSvYUBkUK6fX0hSfGx/OuJRmwuL8kJMdy1OJtrnR7srj7y/XLRFrNJGLfP3T6fw5faKVuQwfZ1+aIpOsCjd+Zz5oqTsgUWHlmlZTl99d7FAXdOegV0MEYDqsc6zEFibPrEYCnX/h8syhc8mUyUUQ4+jrwTkIRDGv8b5GaVnOvG4sglG8esdkxxMQFKkvaePk7WO0iKH/Ln666eouxkocipFzZte/k4VpuLr+0/I4qxjAVWObMSaOnoxen2CZlk0PRwPN5+NizKEq6beWmJ5GWY+cEf/R5F2Sls+NH7AWNv7e6jtVvrorXnwwYq69opyk6mss4ufPhubz9mUxyVdXY2l2TzuD/N8Of+tElX3yAvvHtJHPN3V7t57aMrokcuwL+evEKjw83eDxuxmE3Ex2pZNx9ettPk9PD0A0tEV7Ngg6i7fGCoEE4nuDNWqM/caGRheEZQMDfLKGuZRgO4vf3DAtSSmY00/uNM8IpurCu84PfpFbWP3rkQU1yMcDHoE8Ce4w3srFgk5Bv0FeqBc1rq5pxZnQH55d/+bClf23+Gr99Xwq/8fXZLclJpsDeSn2nmK/csFime+ZlmGh1ukS7Z6xvENzCUVnm1s5ernb28cthKUXYKdyy00NzhITkhhoWWZKqva5r96eY4tt+Zz9rCTEpyUvna/jMGMTZlmNvF4fJy9+JsfvO76/QPqpTOTaV03iwOnL3K1c5ekYZZlK311LW29Qi/vsd/1wOwuWQ2luR4kaETSvZaN5JG7aMhwnfG0gksmrvKzopFEe8Gb9YdY0aySchvB09qkpmNNP5+xus2PFwjDv3/Y92Pbsgu21z85Au3D8vt1wOVxuczkk38+PMr+Nq+MxRlJwcIhNl7+nC4fOw/1SRULhdmmJmXlkiD3c1P3r9Eg91NUXayULTUXUNnmpziOSNvn79OV2+/6Ezl6huk2S/RHB+r0OHu54V3a8hMSeD9i204XD4S42PYunweoOJ0awVMTrfX37ylQ6z08zPNPLJ6AUXZKSTFx7DrYB3dnj6S4mOw2ly8V91Kur9ILDkhht/87hotHb2iI5d+PXXpZF32+sC5q+x+tJyi7JSw0gy6/o/egevNM1fRpbGDvytvnrka8rMIZqQ7xvF0C8k0UUkopPH3M1634ZFklW9kP9vX5Ytsk2BpgOBtjSJhHzc4aLC7abBf4UhtO/ctncPuI5fZsEhLndT78gIct9pFbryt2yuCmV/bp63Qs1MTWJBhpratJ2CsmeZ47G4fc9MS+b3cBIqyU/xZQQh3kc8fAKhvd3GupYuVC9JFRyrdLXO0tp3TVzoCGrrorqgGu5v3qluhVIsLrCmwiGNk+GUrNJ+9Num4+nrJSI7nmQdLhzVa0Zvb5GeasdpcARk/odBWz0MduAKb0mv5+8bAenAF71gM+Xi6haQapiQUM974j6ZjVjSEyhIZyw8vXLbJnuMNAf5bffyr8jNEExG9cYlv4ALffWipMKYNdjcXWjT3z5bSHN6rbmVVfgZ/+/angELJnFT2fthIUnwM339oGcvz0nnKb/jzM80ieDo7JdCAJZpiwe2jprWHmtYeirJTWJhhZk1hBulmE6gqVY1OTl/pIM+SRPV1bfL46aOreOn9Wjo9PpqcHmz+uECD3c3KBek4XF6+8wdL+aSpA1DZUpojYgRrCjJ4dO0CjtS284K/4hhUHl27kPNXO7B1e2lyeoSypfF6vvjuJeFCK3C4eeKe4mGaPMEGW3cLefzuopP1Djy+QfG+UNLaOmMx5EY3UjRSzhLJaJnxxv9GV1jjeXtu3Jc+tmC53mD/rR6M1JUu3d7fofumC7PM/M2vzgtjmhQfy/c+t0xIBlvKtViCsXtVk8PNoRobnzR18A+H6zhZ72TOrAS6eocUPjOT42nr8bJyQRrxsTFiBZ6aEEtxTgo1rd00OtwMqirz0pNYMT+NZz5bykvv15Jn0Voqnr7SwdvnrwPwlXuK2fNhg6hCPtvcydUOD01OLTVUz6R57eMmcUfgGxgUqaX6tdJ7F3/13sWim1WouyH9+hy5ZOOfvrhKZEdBYADYmKZpdEPtrFjEPUtm4/b2B7wvWl3+aNAnq1DB6YlCpoXOLGa88b9Rf+h43p7rQV098yWU1svwOxTNkA1p16icrHeyuSQbS3ICx/zN0jcWZ4u2fno6orEozOMb4Fu/f5shl71fGPXrXX0B45xlTmBnxVxAweMbENt19w1w+konOzYV0trVS4PdTZPTw8l6BxeudnHMaufRtQvYsCiT0rlpoor2isPN/sfXAVDb1iO0dNKT4nninmJxXVbna7GEPEsSp690iDuRr//yLLsfLefEZbu4A9JbH+pGbEjjqIoff34Fe443+vWELvCTL9wOBK6yjd8LY3eszSXZAT0RjI1ZwhGpR/NIhvZm+utlWujMYsYb/xv1h47vj1MRj+G0XvSJQUcLRip4vAMkmWLYWpYr8uadbi9VDQ7/Sl/l5Q+s7D56WezjUI2NdHMcHe5+zlxxCsOnTzZHLtkCRNviYiArJYFv3L+Ew5ds7DpYy5qCDHZsKqTD5eWYtZ2cWYk8siqPpPhYdh2sZc6sBOJjY8hN1xQ4z1/VZJm9/YN884HbaHJoypr6Sv1QjU0Eljs8Pt4+f51en5ZZlJ+VTMVtOdhdXnYfuUzpnBSudfXx7c+W8uaZqxyqseEbUKmsax/W+vCZB0u54qgSuvy6hlHp3FSxjR6shaGVvN5AfcfGApJMcQHCbDfy3YnW0N5Mf70MDM8spKTzKIgkqwsMe200+wEtqPv0A0vYWjZv2KpwW3keOyuKOdXo5IdvXfTn6WvSzNvX5ZNkikHvJqWvVl/zN2D/90+0lesvTjQAcLS2nVX5GawpyCDTbMIUq/nZf/jWRZ7419NCnXJVgab2qfv4l89P43pXHx83aD1+AX9tQSxFs1No6ejl9JUO3qtuFedSlJ1Ck9PDf1ZfZ02BRVT8ftTg5OMGB5+7Pdd/9orY5+aSbCz+zJ1/+/iKPxUVGv0un/uXzmFzSTbl+Zk43T4REwDN1aU3bTeuqIuyU9j9aLm2cr8zn9X5FtYUZPDI6gUGQ6wOC9Zqdx21JJliRY5/qM/zxXdrePHdSxE/f+Pnvq08L6S082QiZZxnFjN+5T8aIq3WRnPLHG7bSH5e3d9fWaf12TVmqRi7aplNsYBWZKRn9OhaN26/vMHpKx288O4l4V4BaOvuIy0pjmNWu7/TlsrZJs2d4+nXVt7xsbEiWPzmmasi4+aNMy288HCZaIhiDJJq/WS7cLp9nKx3ikrkNQUWcXdyrrmDrWXzsJi1rBpNcE3rEaxnC1nM8ZTMSfWfV6ZfydPsH72WdunxDvBOdSsNdnfI7lR65yqjvLWxujhUwFeXozbKNIeSWzZe/2gLu6RrRTKZSOM/CiLdFo/mljnctiNlHun/L8lJ5Tu/vkCexexfaWqGKT/TzKr8DA5famNnRTFby+bx2sdNnLC209btZVZiLD19A2y5LUeoZZpiwOu3bwszkznX3Ok30MqQL793gFmJcXzj/iWsXGjxtz2sZWfFItp7vMKVoscL9D64bm8/u4/WszrfgqIorJifzv3L5vDS+7U8cU+x2EZvJahLF+sFa7fnWdj52id0evrZVp5HUrx2o1o6V2sgU1ln99cUaOdf29YjahNCXVu3d4CVC9I4faWT3PREPvt78wKkF4wN7yOlbhpjM0/eWyKKxozuutF87hLJZCCN/ygYKXAX7UoulM6LMZvE7R0QK/hQx9HVLRvsjeRakgJqAPSc/IUZZraWzePxu4q0hireQc42O7nU5sRq6+Gp+0q4cLWLWYlxHLvczubFs7nuV8Vs7eplzqwE0pLi6B8YxOUdpKu3Xxh4oxHbWpYrsmiMjWQO1diwmONZnjuLjxqcrC/K5PG7h3oH17e7aLC72bGpkJ0Vxbi9/VhtPSJNVbtrUej0aFISSfExfn0iAIXCrBQq6+xc7ehl18FazKZY0bD9x59fETLdctfBWjGBtHT0Un2tiz3H60UAN5wQ23A3yFBsxuHy8vIHVqqvdfLdh5bdUGGXRHIzkcb/BhmPDIngbBJQh2X66Bksbm8/pxo7AK2hum6cjAFNgEaHm+cOVLO2MFPsW+eY1Y7p/VrRSB20QKzV5iIjOZ4Gu5vv/rpapFKmJ8WzICOJQzU2vvLqaX7yhZUB7ii9QErPItpSmsPZ5uMBDeCPWe3sOd7A1rJ57KtqCuj0paevVjU4xZgq69q5Y2G6X0u/338OipggVy5IBzTZ5s0l2WwpzeG5A9VYbS4+bnCwcqEl4Jy3lecJ7Z+0pDiWzNGURSvr2kXGjtvf8zdYiC3YzWNs2rK/qondRy8DjFgsJpFMJaTxv0HG41be6DbQ8+2NKYT6ajk/08yJyw6hZ/Pdh5aKleZ7/g5dGxZlUZidjLVNkyu2mE24vf14dN+OglhFL5/fgtPlE3cCHzc4hDzxrMQ43jh7jZzUBFq7+0h1a1+Vyjr7sApjHaPB/Omjq4Rq6E8rLwspaeM471iYztayXKGF4/ENcsxq96uDZonMGj2l0u1vxA4QF6OtvtcXZQp306Eam8jyCTbYGckmPrNMq25+ZNUCHvfXSOhaPsY6gZGKtIxuIre3n0fvXMjlIHloiWSqo6hqeLGqqUR5eblaVVU12cOIihsplgn1XqutR1S2AkIWQQ++PvvGBQqzzCSa4kiK17ps6X71w5ds6AFRGF44Fu6Y+nN6WiXo6p1J/OmahTz/7iVWzE+nvaeP731uGZ1uH1//5Vl+/PkVw1bdxtaL6woz+f5vqvn2Z0v5pKmDE5ftnKx3sLOimO3r8tlzvEGkrepjfvmwlQstnTx1XwlvX7gu/jY2qtdcRucpzE7xZwopQtFU1+6J9LlE+5rxGuqTgq4WKpFMRRRFOaWqannw83LlPwHciCso1Hvf82ewwJC42vqiTLaV5/HUvjN+9wWio5TegcuY1QJKgC5NOM133X2ityR0uLxUX+2isq5dqHfqzVWMTd31Y339l2dFc3hdQsLt7RdZRO9cuE6D3c233zgvmqQDfGhtZ2vZvIAx6vUM+uTDOzWY4mI4ZrWzqcERcA7vVbeKzl4AOysWieuhu2Mi+dyjfc2YiTUVA7iySlcSLdL4TwA3YhRGkhvWdfnL8zOEr983cAHfwICo7H3inmJeer9WNE7RCplUDtXYhPxxuPF+5dXTVNbZ8Q2cF60Mv3bvYkAVq+pF2Sl8+83z3FmQSVdvP888WEqn28fOf/uEtKR4fvTbavadauH9i62crHeyY1OhyPhZmGEWInFG4/9Rg1NU4eZnmtlUnI29pw9QePiO+Zqra3YKez9sHFbANXTdBgLuGozB6PEiOBA81Vb8skpXEi3S+N8goVZaN2oUzjV3cqjGFhBU1GMBe47Xs2NTIR7vAC++W8PWslxK56ZS1ajl0G+/M58X3q2hdG4ax63tInC6fV2BCKi+eaaF7esKhM97+7oCMd7SuWlU1tkpnZsmdIP0vPqNxdmiDqHD3c/iOVp17GsfNdHbP0BPXz9NTg9Wmybc5htQRcBW75u7tjCTHRsLONvcyaN3LiQxTstq0pvC63cQBVlucQewpiBD0+lXCUi7NAqeZSSbhkkyG4PR48VUNPhGpuLdiGRqIo3/DRJupTUa/7Ke6qmnEBoDl8b961kvxo5b+kSh097Th9XmorLOLoq8TjU62VqWi6Io/v93AA1CygCGAsyPrM6jtq2b+5fN4W/f1o5bmJ3CxuLsYYbF2BReJyM5ni1Lcth3qpnyhRnCdaShsLVsXkD84p4ls8V1eOWwVQSDi2enUjw7hSRTHEcutQFw8XoX3/vcMoARBc+MbRkjxTtuNab65CSZOkjjf4OEW2mFmhR0oz+UujjU8EX//4ZFmaLnbnDBl65Xr0kaW4iLieGJe4opnp3C2eZOVuSlc//SOWLl/8jqPOFK0fPn8zPN4m5gZ0UxHu8ApxqdwlcOiMlErwC2mONDViI7XF6cLq1x/NJ5s/j0WjcvPlJGflYyRbNTxDXRVuWa7v0rh63C8KtqYErr0KSiXZ/NJdk8/3AZHt8AnzR1smTOLL/0hCpy/sOtcIPbMsLIrRV1xuI3l752yXRDGv8JItSkMFQ1WiwydV45bGVLaY7I36+sa2djcbYQGbO7vCTFx/DyYSuoKjs2FfoLlbRslk0NDr712UCf9i8eWwtoBmn5/DSKZ6dy4rKWIjkrMVZU/755poXqa11U1tlFLMBiHsrVXz7/Kh5/muiL714KSL3Uewgc+N01HC4fprgYGh1ukWOv37UY+wboGUg7K4oBVWQlGWMQbm8/Ht8g64syReOaR1blUdvaTWJ8TNg+u+H094PbMkajjx9p4g73Pulrl0w3Js34K4rSAHQDA0B/qFSk6UA4Q2F04+jP2Xu8rCmw4PEOCHll/b2aa6KeO/yG8+UPrACcbeoI0ODR0wpPNzo5cO4qq/IzIo5NX0HrbRfPtXTz2eWa8qd+t6FnxbxX3RqgOfPkvYt58d2agCIxsylWrMyLspNxuHxkJMfz1Ypi/v5grRiPfm5Ha21Ch0df8f/sS6sDCtegWuTq68faWVHMpsVDrq9DNTaWz09nx8ZCqq91DgtaG6uLn3mwVIjLGQ11tPr4kSbucO+TvnbJdGOyV/6bVVVtn+Qx3BDhDEWw0JexEvRkvZPMlMDWgsYiI4ALVzUp5RXz01hbmCGKsbaU5uBweXnytTM0Oty88G6NWOmHG9uW0hyKc5o42+RkxXxLgHtF98MbBc50HC6vqCbOzzTj8fv4d1YUs7NiEU6XjzmzEvne55aJ6trH9n7M/sfXiX3Ze7xU1tnZVJxNQdZQ1yy3d0BkH+kr/OBiN6OiqfE6VdbZRYcu47nqshJQHTKlNdznFUwov/mW0hxOXLYPm3QivUcimcpMtvGf9oT60YcS+tpWnseRSzaOWe2sL8pkS2nOMDeFvt2e4/Viu0dWL+C96lY83kF/ps5VzKZYLfsFLTtnJJeExWziW79/m9hOx2yKE24ZY7GUnh6p5c63G1btQ5LHxsmqKDuFJ+4p5kOrHYfLx7deP8fawkyhiLmzYpHQz9FX3js2Fgp55T0fNrClNMcvnVAQMMbgc4tkhItnp+IbGOSJe4pZW5gZ0sCP1UjriqCh1EIlkunIZBp/FXhHURQVeEVV1d3BGyiKsgPYAbBgwYKbPLyxoRsr3djpZCSbeOlPVg6rDoVAyQANzV1Unp8hWgxuWJTpf03rZXvkko2luWk87r+rCOWSCH4+VKewodWyto0eINZdMW7vAEdrbX7jr4j96z51vZ/wxw0OQ1tFJcBVZJRM0CdGY5DZaFSHj1nLSnL7XWX6+IKNsPHOamOxY9xX4dKtI7nVmEzjv0FV1RZFUWYD7yqKclFV1SPGDfwTwm7Q5B0mY5CjJdrUz0jGRK901TXugYAV+v6qJq3KdXF2xH0Nf34o1fO7Dy0V+y3OaeLIJRtbSnP8BVHVQnIZEO0SzzY7ReGZZsxVYeS3rysQAVZNr6cFj2+QpPiYgHFpfQniqKyzi6Yry+dfFZPI8DGr4jFYvyf4XKORVR4r0q0judWYNOOvqmqL/7FNUZT/AFYDRyK/a+oTbLyG0juHcuKDV/pGHX9NDmFgmMZ9pIlDfy6S60fLtVf9BVvtIrgLUNvazTGrnecOaKv9tYWZvH3hOruPXGZNQQar8y181ODkZL0zSNRNCXjUi9K0Bi2dPPNgqWgWb5z8jLGI96pbAdh1sE5k8Bi19Y0yzqvyM0J26dKvgZ5OGurcZRqmRBLIpBh/RVGSgRhVVbv9f98HfG8yxjJeBBcV6UbG2BRE163XV886ujtGjwkENxCJ7CLS9xHoHgmuJwDNwG5YlMXOikUBypdP3FMMEKDJv75IczPpomt3FmURnDZplDY2upSGCs+qAxrCG2sbjJk3oRqmGM9Zd1Hpuj+j9bvLNEyJZDiTtfLPAf7DX3EaB/yrqqpvT9JYxoXgoiKjb1x/1I1QcI66vnJemptGeX4GupENznYJlaMu2g16+/37UsVxdmwsZMOiTOw9Xh5ZnedPu2znjoWWgODr0w8sCanJ/+aZFoIzb4yEilOAIlxHxslEr20wGvhgnRzj+YTqZralNIe1hcOzkkZC+uslkuFMivFXVfUysGIyjh2K8XALhCoqCs73D2eEgpuDhJ4g4M0zLQGrZyDA0G8uyWZrWa6IE7i9A0LpsvpaF14RkFUDxqzfjej708enSz5EI08BelZPvtDUsdp6OFprY8fGwpATiJ6989S+M6L3wFDuf+AqXf+76K6UgHaL4T6v4DHKFb9EEohM9SSyWyDaiSGUsFiofP+RmqDogUujqqcw8JsKRdcqHaPOjjFOYNTUqWpwiCYom0uyhdaN3hRen2xgSALB+PdIzer1u56dFcUB1+q5A9VU1tmJj40Je+2M2UVrCzPDBnQjHX+s20gkMxlp/InsFrgRI7KtPA97Tx/V17rDFgcFo2fDaAZZmzD03HZUhvm8jTo7+t2DcV9P3rs4ZDwiknsl+O9wmUpbSnN48d1LePztD4PbTz7zYCne/vMU56QOi3OANrEWz07BN6CKlb9+zEgTbTRuHOnqkUgiEzPZA5gK6AY0lMHZVp43zFcdCd0loa+6a9t6RHZN8HYvvnuJF9+tEdtqz9Vg7/GKXrIwVGCUZIoJCBpHew76JKAXUOnG/IdvXQxIH4WhgLJxf/q2+jb6a7r+0O6j9ZhNsWwty2VzSTar8jN45bAVi9nEpsXZ7D5yOaBwS0fLza/njoXp4vqEO4fREul6SCQSufIfkdH6i413CkDYBiqhAsRGN1FwYZT+GC4mEI17Klj/JnifMFrdGi12sDDDLNI2dX+9/hhpBS4kIFxedh28iNs7MMx1Fuk8jOOXaZwSyeiQxn+cCTZ2egVtKC0aPUAcrO4JyrDMnlDZQ0aicU8Z9W/02ECkfeqEmwC3rysQaZ1GbSBjVs5I7RG3lefxxL+e9j8TXR1fqMnQ7R0Qbi85CUgkIyONv5+xZvwEv083aHqWzzMPloZNTwzO8AECdO9DGfNwxjRawTI97z7Ylz+WoKjeRhKqhTaPMSsnGvYcb+CYVVP9HCroGvm4wROX29svA7wSySiQxt/PWAO7od4XKssn0vtCGe5oA5ZGIbZw4w6X9hiNvHEkHC5vgNaOpdw0hglUW+032N3D7o6iITDgHScDvBJJlEjj72es2SHhDPdIOjPjJRFsTJUM1682nI/8RjNigrV2xjKB6mmnN6rJI3P5JZLRIY2/n2iMR7TN2iPpzOgYJYIhcovBUMcNJc2gP6+7nPTCqlA+cv1YN2Iw9QlM19oZ62QSrphMIpFMHNL4R0E4cbZo3xfKsEVy9QQTzrUULM2gPx/scoomYDwWgjXux7L6lsVYEsnkII0/0fdnDSVAFmlfkQxbsKGMZPiiiQkYi7YiuZxCqYmOddU90kQSzf5DVTRLJJKJRxp/ou/Puio/g+ffqaGlw4PFbAqpVzNSIHcshHMthWvcMpLLSceoBBpNfn2kcYUy9Ma6gucfLgtbgBZc0SyRSCYeafyJ3kg//04Nx6x2jlm1DlShjFWwUmW0WkHG54FRr8jHNtGoQY/hifbuCAhwMel1BYF9AMZj7CMjdfwlkvDMWOM/GtVHo7AaQNHsFCxmU0S3SjjlyWhaLkLkAHAoxuLO2b6uIOr0yLFUAQfXAUQz9vFExhMkkvDMWOM/GsMQvJofzf6DK0/DrXKjDQCPRsZBP7dwjWZGc2cy1irgyWx8LsXdJJLwzDjjH0nNMtS2wWmT0R7D7R1gZ8UigpUuw7VcjDYAHK2Mg/ExXKOZ0ex/NKvzUC0bJ8MAy9x/iSQ8M874j2bFH02lbvj31YrMoGDXyo3KRBsfQxFs9Iw6QiMZ4fEw1uNZSyCRSCYGRVWjE9OabMrLy9Wqqqob3s9ogoA3svIfqZn6WPY7XZCBVolk6qAoyilVVcuDn59xK//RuAKiqdQd6xhu5fRG6W6RSKY+t3wzl+DmKtG+diMENz8Jxbby6JvEjHacE3VeEonk1uGWN/6RDHE0Rno0WG09fOlnH7EqPyOkYTca5dF0mhrtOMfjvMZ7ApETkkQytbjl3T6RApjjnYkypLBJSIXNaAO9wamZox3nRARtbxSZcy+RTC1ueeM/Uiep8TREekGTrrAZTLRGOVRq5mjGOR7nNd4To8y5l0imFjMu22c6EK4oSyKRSEZLuGyfW97nDyP7m6eaP1rLMlrMk/eWSMMvkUgmhBlh/HV/81P7zoQ08OECpJM1KUy1yUgikdx63PLGX5Na6GfDokyhLhlMuLTL8c4GipbJOu54IScviWTqc8sHfHWJhp0VxWwszh6xwYmRyWo0crODo+NdkSszeySSqc8tb/zHosipM1mVuDe7Qna8jbXM7JFIpj6TZvwVRbkf2AXEAj9VVfVHE3GcYEM62lXuTDBk432ON3rNJRLJxDMpPn9FUWKB/wM8AJQCX1AUJXRy/DgT7E8fyT89mkrcqcBY/O0TfY7TPYYhkdyKTNbKfzVQp6rqZQBFUf4NeAionugDh9K6H2//9GSudG/0fCZi7DPh7kkimW5MlvHPBYzLwGZgTfBGiqLsAHYALFiwYFwOHErr3vg4HkxmwPNGz2cixi5VPiWSqceUDviqqrob2A1ahe9EHGMiDNN07l4lV+kSycxgsox/C2C0LvP9z90STOeV7nQeu0QiiZ7JKvL6GChWFKVAURQT8MfAm5M0FolEIplxTMrKX1XVfkVR/gfwn2ipnv+squqFyRiLRCKRzEQmzeevqupvgd9O1vElEolkJnPLa/tIJBKJZDjS+EskEskMRBp/iUQimYFI4y+RSCQzkGnTxlFRFBvQOMa3ZwHt4zicqYo8z1sLeZ63DpN5jgtVVc0OfnLaGP8bQVGUqlA9LG815HneWsjzvHWYiuco3T4SiUQyA5HGXyKRSGYgM8X4757sAdwk5HneWsjzvHWYcuc4I3z+EolEIglkpqz8JRKJRGJAGn+JRCKZgdzyxl9RlPsVRalRFKVOUZRvTvZ4JgpFURoURfmdoihnFEWpmuzxjBeKovyzoihtiqKcNzyXoSjKu4qi1PofLZM5xhslzDl+R1GUFv/neUZRlN+fzDGOB4qi5CmKckhRlGpFUS4oirLT//yt9nmGO88p9Zne0j5/f6P4S8C9aK0iPwa+oKrqhPcKvtkoitIAlKuqeksVyyiKsgnoAfaqqrrM/9zfAQ5VVX/kn9Atqqp+YzLHeSOEOcfvAD2qqv6/kzm28URRlLnAXFVVTyuKkgqcAj4HfJFb6/MMd54PM4U+01t95S8axauq6gX0RvGSaYKqqkcAR9DTDwF7/H/vQfthTVvCnOMth6qq11RVPe3/uxv4FK2f9632eYY7zynFrW78QzWKn3IfwjihAu8oinLK3/j+ViZHVdVr/r+vAzmTOZgJ5H8oinLO7xaa1q6QYBRFyQduB05yC3+eQecJU+gzvdWN/0xig6qqK4EHgL/yuxJueVTNb3kr+i7/ASgCyoBrwPOTOppxRFGUFODfga+qqtplfO1W+jxDnOeU+kxvdeN/SzeKN6Kqaov/sQ34DzSX161Kq9+vqvtX2yZ5POOOqqqtqqoOqKo6CPwjt8jnqShKPJpB/BdVVV/3P33LfZ6hznOqfaa3uvGfEY3iFUVJ9geWUBQlGbgPOB/5XdOaN4Ht/r+3A29M4lgmBN0Y+vlDboHPU1EUBfgn4FNVVV8wvHRLfZ7hznOqfaa3dLYPgD+d6u8ZahT//0zuiMYfRVEK0Vb7oPVl/tdb5TwVRXkVuBtNErcVeBb4FbAPWIAm8/2wqqrTNmAa5hzvRnMPqEAD8GWDX3xaoijKBuAo8Dtg0P/0t9D84bfS5xnuPL/AFPpMb3njL5FIJJLh3OpuH4lEIpGEQBp/iUQimYFI4y+RSCQzEGn8JRKJZAYijb9EIpHMQKTxl0gkkhmINP6SGY+iUakoygOG57YpivJ2mO2TFEU5rChKrKIo+Yqi/EmEff9YUZSLfj2X/1AUJd3//O8pivLz8T4XiSRapPGXzHj8ejKPAy8oipLo12T5AfBXYd7yZ8DrqqoOAPlAWOMPvAssU1V1OZq8+NP+Y/4OmK8oyoLxOQuJZHTIIi+JxI+/T4ALSAa6VVX9fpjtjgN/oqpqg6IoJ4DbgHpgj6qqL0bY/x8Cn1dV9b/6/78TSFBV9e/G+VQkkhGRxl8i8ePXRToNeNEa4/SF2MYEXFFVdY7//3cD/1NV1Qej2P+vgddUVf2F///rgW+qqvoH43YSEkmUxE32ACSSqYKqqi5FUV5D67Y0zPD7yQI6RrtvRVH+F9AP/Ivh6TZg3mj3JZGMB9LnL5EEMsiQGFcoPEBiuBcVRfmZvz/rbw3PfRF4EPivauCtdqJ/fxLJTUeu/CWSUaCqqtOf5ZOoqmov0A2kGl7/knF7RVHuB/4auEtVVXfQ7hZzC0g1S6YncuUvkYyed4AN/r/PAQOKopxVFOXJENv+b7TJ4V3/HcHLhtc2A7+Z2KFKJKGRAV+JZJQoirISeFJV1f92A/tIAA6jtd/sH7fBSSRRIlf+EskoUVX1NHBIUZTYG9jNArRMH2n4JZOCXPlLJCFQFCUTOBjipQpVVe03ezwSyXgjjb9EIpHMQKTbRyKRSGYg0vhLJBLJDEQaf4lEIpmBSOMvkUgkM5D/HzWSMkS4GR45AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"training_set.plot.scatter(x='Y_(t-2)', y='Y_(t-1)',s=1)"
]
},
{
"cell_type": "markdown",
"id": "surprised-tobago",
"metadata": {},
"source": [
"#### Αυτοπαλινδρομικό μοντέλο 2ης τάξης AR(2)"
]
},
{
"cell_type": "markdown",
"id": "apart-pizza",
"metadata": {},
"source": [
"$$Y_t = A + B^{(1)} Y_{t−1} + B^{(2)} Y_{t−2} + \\epsilon_t$$"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "promising-capacity",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression()"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = linear_model.LinearRegression()\n",
"X = training_set[['Y_(t-2)','Y_(t-1)']]\n",
"y = training_set['Y_t']\n",
"model.fit(X,y)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "complicated-consolidation",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.07637309, 0.71502421])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.coef_"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "phantom-bargain",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Y_t Y_(t-1) Y_(t-2) pr1\n",
"Date \n",
"1990-12-22 13.2 13.1 15.4 12.870713\n",
"1990-12-23 13.9 13.2 13.1 12.766557\n",
"1990-12-24 10.0 13.9 13.2 13.274712\n",
"1990-12-25 12.9 10.0 13.9 10.539578\n",
"1990-12-26 14.6 12.9 10.0 12.315294\n",
"1990-12-27 14.0 14.6 12.9 13.752317\n",
"1990-12-28 13.6 14.0 14.6 13.453136\n",
"1990-12-29 13.5 13.6 14.0 13.121303\n",
"1990-12-30 15.7 13.5 13.6 13.019251\n",
"1990-12-31 13.0 15.7 13.5 14.584667\n"
]
}
],
"source": [
"X = testing_set[['Y_(t-2)','Y_(t-1)']]\n",
"testing_set['pr1'] = model.predict(X)\n",
"print(testing_set)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "bearing-priority",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(5.0, 25.0)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAIHCAYAAAA8ZqVjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1eUlEQVR4nO3dd5yU1fXH8e+lS1NRQJooKlLsLKxGQQUXG0WxR7ElaiyJJkZjy09jSUzsLSp2E3vBgkhxRRFFASmCirA0BQFRFKSXvb8/zkxYly2zM8/MM/PM5/167Wt2p9y5LDszz3nuuec4770AAAAAALmtVtgTAAAAAACkjuAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIqDa4M451845N8Y594Vz7nPn3KWx629wzi1yzk2NfR1TyeOPcs595Zwrcc5dFfQ/AAAAAAAguer63DnnWklq5b2f7JxrIulTScdJOlnSKu/97VU8trakWZKKJC2UNFHSad77L4KZPgAAAABASmDlznu/2Hs/Ofb9z5K+lNQmwfF7SCrx3s/13m+Q9LykgclOFgAAAABQsRrtuXPO7SJpf0mfxK66xDn3mXPucefc9hU8pI2kb8r8vFCJB4YAAAAAgATVSfSOzrnGkl6RdJn3fqVz7kFJN0nyscs7JJ2b7EScc+dLOl+SGjVq1K1Tp07JDgUAAAAAOe3TTz/93nvfvCaPSSi4c87VlQV2z3jvX5Uk7/3SMrc/ImlYBQ9dJKldmZ/bxq7bivd+iKQhklRQUOAnTZqUyNQAAAAAIHKccwtq+phEqmU6SY9J+tJ7f2eZ61uVudvxkmZU8PCJkvZwzu3qnKsn6VRJb9R0kgAAAACAqiWycnewpMGSpjvnpsauu0bSac65/WRpmfMlXSBJzrnWkh713h/jvd/knLtE0khJtSU97r3/PNB/AQAAAACg+uDOez9OkqvgpuGV3P9bSceU+Xl4ZfcFAAAAAASjRtUyAQAAAADZieAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAioNrgzjnXzjk3xjn3hXPuc+fcpbHrb3POzXTOfeacG+qc266Sx893zk13zk11zk0KeP4AAAAAACW2crdJ0uXe+y6SDpR0sXOui6TRkvby3u8jaZakq6sY43Dv/X7e+4KUZwwAAAAA2Eq1wZ33frH3fnLs+58lfSmpjfd+lPd+U+xuH0tqm75pAgAAAACqUqM9d865XSTtL+mTcjedK+ntSh7mJY1yzn3qnDu/irHPd85Ncs5NWrZsWU2mBQAAAAB5L+HgzjnXWNIrki7z3q8sc/21stTNZyp56CHe+wMkHS1L6exV0Z2890O89wXe+4LmzZsn/A8AAAAAACQY3Dnn6soCu2e896+Wuf5sSf0kne699xU91nu/KHb5naShknqkOGcAAAAAQDmJVMt0kh6T9KX3/s4y1x8l6UpJA7z3ayp5bCPnXJP495L6SpoRxMQBAAAAAFsksnJ3sKTBknrH2hlMdc4dI+l+SU0kjY5d95AkOedaO+eGxx7bUtI459w0SRMkveW9HxH8PwMAAAAA8lud6u7gvR8nyVVw0/AKrpP3/ltJx8S+nytp31QmCAAAAACoXo2qZQIAAAAAshPBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQCgxhYvlvr3l269Vfr667BnAwAAJII7AEASXnpJGjZMuvpqqX176bDDpEcekX78MeyZAQCQvwjuAAA1VlwsdeggzZkj3XSTtGSJdP750k47SSecIA0dKq1fH/YsAQDILwR3AIAa2bRJeu89qU8fC/Cuu0768ktp0iTpooukDz+UBg2yQO/886WxY6XS0rBnDQBA9BHcAQBq5NNPpZUrLbiLc07q1k266y5p4UJpxAipXz/p2WelQw+Vdt1VuuYa6fPPw5s3AABRR3AHAKiR4mK77N274tvr1JGOPFL6z3+kpUulZ56RunaV/vUvaa+9pP33l+64Q/r228zNGQCAfEBwBwCokeJiaZ99pObNq79vo0bSr38tDR8uLVok3XOPVK+e9Oc/S23bSkVF0pNPsj8PAIAgENwBABK2dq3tqSubkpmoli2lP/xB+uQT6auvpL/+VZo7VzrnHOmYY6RVq4KfLwAA+aTa4M451845N8Y594Vz7nPn3KWx65s550Y752bHLrev5PFnxe4z2zl3VtD/AABA5nz0ka2yJRPcldWxo/S3v0klJdLjj1uBliOPlFasCGSaAADkpURW7jZJutx730XSgZIuds51kXSVpGLv/R6SimM//4Jzrpmk6yUVSuoh6frKgkAAQPYrLpZq15Z69QpmPOds5e6FF6QJEyxo/OGHYMYGACDfVBvcee8Xe+8nx77/WdKXktpIGijpqdjdnpJ0XAUPP1LSaO/9cu/9j5JGSzoqgHkDAEJQXCz16CE1aRLsuCeeKL32mjRjhjVEX7Ik2PEBAMgHNdpz55zbRdL+kj6R1NJ7vzh20xJJLSt4SBtJ35T5eWHsOgBAjvnpJ+tll2pKZmWOPdYKr8ybZyuD33xT/WMAAMAWCQd3zrnGkl6RdJn3fmXZ27z3XpJPZSLOufOdc5Occ5OWLVuWylAAgDR4/31rRp6u4E6y9gqjRlkLhZ49pTlz0vdcAABETULBnXOuriywe8Z7/2rs6qXOuVax21tJ+q6Chy6S1K7Mz21j123Fez/Ee1/gvS9onkh9bQBARhUXS9tsIx10UHqf51e/ksaMseqZPXtKX3yR3ucDACAqEqmW6SQ9JulL7/2dZW56Q1K8+uVZkl6v4OEjJfV1zm0fK6TSN3YdACDHFBdLhxwi1a+f/uc64ACroFlaKh16qDR1avqfEwCAXJfIyt3BkgZL6u2cmxr7OkbSrZKKnHOzJR0R+1nOuQLn3KOS5L1fLukmSRNjXzfGrgMA5JAlS2wFLZ0pmeXttZf0wQe2Wnj44dYfDwAAVK5OdXfw3o+T5Cq5eauPee/9JEm/LfPz45IeT3aCAIDwvfuuXWYyuJOkPfawAK9PH+mII6Rhw2wlDwAAbK1G1TIBAPmpuFjabjtp//0z/9zt20tjx0rt2klHHSWNGJH5OQAAkAsI7gAAVfLegrvDD7cG5mFo3dqqdXbqJA0YIA0dGs48AADIZgR3AIAqzZ0rLViQ+ZTM8po3t/TQAw6QTjpJevbZcOcDAEC2IbgDAFSpuNguww7uJGn77aXRo61q5xlnSI89FvaMAADIHgR3AIAqFRdbWuSee4Y9E9OkiTR8uHTkkdJvfyvde2/YMwIAIDsQ3AEAKlVaaqmQffpIrrK6ySFo2FB67TXp+OOlSy+V/vGPsGcEAED4CO4AAJWaPl36/vvsSMksr3596cUXpdNPl665RrruOiv+AgBAvqq2zx0AIH9l0367itSpIz31lDU6v+UWqVkz6U9/CntWAACEg5U7AECliouljh2ltm3DnknlateWhgyRevSQXnop7NkAABAegjsAQIU2brTm4dm6aleWc1KvXtKUKdKGDWHPBgCAcBDcAQAqNGGCtGqV1Lt32DNJTGGhtH69NG1a2DMBACAcBHcAgAoVF9uK2OGHhz2TxPToYZeffBLuPAAACAvBHQCgQsXF0n77STvsEPZMEtOunbTTTgR3AID8RXAHANjK6tXS+PG5sd8uzjlLzSS4AwDkK4I7AMBWPvzQCqrkUnAnWXA3e7a0fHnYMwEAIPMI7gAAWykulurWlXr2DHsmNVNYaJcTJoQ7DwAAwkBwBwDYSnGxdOCBUqNGYc+kZgoKLD2T1EwAQD4iuAMA/MLy5dLkybmXkilJTZtKXboQ3AEA8hPBHQDgF957T/I+N4M7yVIzJ0ywfwMAAPmE4A4A8AvFxZaOGe8bl2sKC6UffpDmzg17JgAAZBbBHQDgF4qLpV69pHr1wp5JcuJFVUjNBADkG4I7AMD/LFokffVV7qZkSlLXrlLDhgR3AID8Q3AHAPif4mK7zOXgrk4dq5pJcAcAyDcEdwCA/ykulnbcUdpnn7BnkprCQmnKFGn9+rBnAgBA5hDcAQAkWXXJ4mLp8MOlWjn+6dCjh7RhgzRtWtgzAQAgc3L84xsAEJRZs2zPXS6nZMZRVAUAkI8I7gAAkqKx3y6ubVupVSuCOwBAfiG4AwBIsuBu552l3XYLeyapc85W7wjuAAD5hOAOAKDNm6UxY6TevS0wioLCQqmkxBqaAwCQDwjuAACaOlX68cdopGTGxffdTZgQ7jwAAMgUgjsAgN591y579w53HkEqKLBVSFIzAQD5guAOAKDiYqlzZ6l167BnEpwmTaSuXVm5AwDkD4I7AMhzGzZIH3wQrZTMuMJCC+68D3smAACkH8EdAOS5jz+W1qyJbnD3ww/SnDlhzwQAgPQjuAOAPFdcLNWqJR12WNgzCR7NzAEA+YTgDgDyXHGx1K2btN12Yc8keF27So0aEdwBAPIDwR0A5LFVqyzwiWJKpiTVrm1VMwnuAAD5gOAOAPLY2LHSpk3RDe4kqUcP6+O3fn3YMwEAIL0I7gAgjxUXS/XrSwcfHPZM0qew0CqCTp0a9kwAAEgvgjsAyGPFxdKvfiVts03YM0kfiqoAAPIFwR0A5Klly6Rp06KdkilJbdtac3aCOwBA1BHcAUCeGjPGLqMe3Em2ekdwBwCIOoI7AMhTxcVS06ZWTTLqCgutkfn334c9EwAA0ofgDgDyVHGxdOihUp06Yc8k/eL77iZMCHceAACkE8EdAOShBQtsJSsfUjIlW52sVYvUTABAtFV7vtY597ikfpK+897vFbvuBUl7xu6ynaSfvPf7VfDY+ZJ+lrRZ0ibvfR4k/wBA9isutst8Ce4aN5a6dmXlDgAQbYkk4zwp6X5JT8ev8N6fEv/eOXeHpBVVPP5w7z27HAAgi7z7rtSihQU8+aKwUHr1Vcl7ybmwZwMAQPCqTcv03o+VtLyi25xzTtLJkp4LeF4AgDTx3lbuevfOryCnsFBavlwqKQl7JgAApEeqe+56SlrqvZ9dye1e0ijn3KfOufNTfC4AQAC+/FJasiR/UjLjaGYOAIi6VIO701T1qt0h3vsDJB0t6WLnXK/K7uicO985N8k5N2nZsmUpTgsAUJl8228X16WL1KgRwR0AILqSDu6cc3UkDZL0QmX38d4vil1+J2mopB5V3HeI977Ae1/QvHnzZKcFAKhGcbG06672lU9q17aqmQR3AICoSmXl7ghJM733Cyu60TnXyDnXJP69pL6SZqTwfACAFG3aJL33Xv6t2sUVFkpTp0rr1oU9EwAAgldtcOece07SeEl7OucWOud+E7vpVJVLyXTOtXbODY/92FLSOOfcNEkTJL3lvR8R3NQBADU1ebK0YkV+B3cbN1qABwBA1FTbCsF7f1ol159dwXXfSjom9v1cSfumOD8AQID+/W9r5t27d9gzCUfZoioHHhjuXAAACFqqBVUAADniySelp56Srr7aetzlozZt7It9dwCAKCK4A4A8MH26dNFF0uGHS3/7W9izCVdhIcEd8s/vfieddFLYswCQbgR3ABBxK1dKJ54obbut9OyzVjUynxUWSnPnSnTdQb7YvFl64QXplVesxyWA6CK4A4AI81467zyppER6/nlpp53CnlH44vvuJkwIdx5ApkybJv30k70fvPpq2LMBkE4EdwAQYf/+t/Tii9Itt0iHHhr2bLJDt25WVIbgDvlizBi7bNPG3g8ARBfBHQBE1MSJ0h//KB1zjHTllWHPJns0bizttRf77pA/xoyR9txT+u1vpbFjpcWLw54RgHQhuAOACFq+3IontGolPf20rVRhi8JCW7nzPuyZAOm1aZMFdIcdZu8JpGYC0cbHPQBETGmpdNZZ0rffSi+9JO2wQ9gzyj6FhdKPP0qzZ4c9EyC9Jk+Wfv7ZKuV27Sp16UJqJhBlBHcAEDG33y4NGybdcYfUo0fYs8lO8d8LqZmIuvh+u8MOs8uTT5Y++MBO/gCIHoI7AIiQsWOla66x9KtLLgl7NtmrSxfbe0dwh6gbM8b+3lu2tJ/jqZmvvBLuvACkB8EdAETE0qXSqadKHTpIjz4qORf2jLJX7dpSQQHBHaJt40Zp3DhLyYzr0sUKCr30UnjzApA+BHcAEAGbN0u//rXtI3v5Zalp07BnlP0KC63/17p1Yc8ESI+JE6XVq38Z3Em2ejdunLRoUTjzApA+BHcAEAE33ii9+670wAPSPvuEPZvcUFhoKxtTpoQ9EyA94vvtyve4JDUTiC6COwDIcaNGSTfdJJ19tnTuuWHPJncUFtolqZmIqvfes5M9O+74y+s7d5b23pvUTCCKCO4AIIctXCidfrqVOH/ggbBnk1tat5batiW4QzStXy99+OHWKZlxpGYC0URwBwA5auNG6ZRTbM/Yyy9LDRuGPaPcU1hIcIdomjBBWru26uBOsvcOANFBcAcAOeqqq6SPPrLKmHvuGfZsclNhoTRvnrRsWdgzAYI1ZoxVzO3Vq+LbO3WylE1SM4FoIbgDgBw0dKh0553SxRfb6h2SE993N2FCuPMAgjZmjLTfftL221d+n5NOstTNhQszNi0AaUZwBwA5Zu5c6ZxzrE/bHXeEPZvc1q2b9bwjNRNRsm6dNH585SmZcaRmAtFDcAcAOWTdOunEEy3d6sUXpfr1w55RbmvUyBo6E9whSsaPt4Iq1QV3e+4p7buvvZcAiAaCOwDIIZddZn3Znn5a2nXXsGcTDYWFlpZZWhr2TIBgjBkj1aol9exZ/X1PPtmCwW++Sf+8AKQfwR0A5IhnnpEefli68kqpf/+wZxMdPXpIP/0kzZ4d9kyAYIwZYynH225b/X1JzQSiheAOAHLAl19KF1wgHXKIdPPNYc8mWmhmjihZs8b+lqtLyYzbYw8rvEJqJhANBHcAkAOuvlpq0EB6/nmpbt2wZxMtnTtLjRsT3CEaPvzQemAmGtxJlpr58cfS11+nb14AMoPgDgCy3IYNUnGxHYC1aRP2bKKndm2pe3eCO0TDmDFSnTq2yp8oUjOB6CC4A4As99FH0qpV0pFHhj2T6CoslKZNk9auDXsmQGree89OVjRunPhjdt9d2n9/UjOBKCC4A4AsN2KEnYmvSZoVaqawUNq0ySqRArlq1Spp4sTk3itOPtlWrxcsCH5eADKH4A4AstzIkdLBB0tNm4Y9k+iiqAqiYNw4O0mRTHBHaiYQDQR3AJDFliyRpk4lJTPdWrWS2rUjuENuGzPGCi796lc1f+xuu0kHHEBqJpDrCO4AIIuNGmWXRx0V7jzyQWEhwR1y25gx9nfcsGFyjz/5ZGnCBGn+/ECnBSCDCO4AIIuNHCm1aCHtu2/YM4m+wkI7qP3uu7BnAtTcihXSp5+mtjeX1Ewg9xHcAUCWKi21lbu+faVavFunXXzf3YQJ4c4DSMYHH9h7RirBXYcOUrdupGYCuYzDBQDIUpMnS99/T0pmpnTrZj3vSM1ELhozRqpfXzrooNTGOflkq7g5b14w8wKQWQR3AJClRoywy6KicOeRLxo2lPbem+AOuWnMGAvsGjRIbRxSM4HkbdwozZoV7hwI7gAgS40caatJLVqEPZP80aOHpWWWloY9EyBxy5dbVd0gemHuuqtUUEBqJpCMESOkZ5+VvvkmvDkQ3AFAFlqxQho/nhYImVZYaL/7sM+8AjUxdqzkfTDBnWSpmZMmSXPnBjMekA+8l774wr7/6qvw5kFwBwBZqLhY2ryZ4C7TaGaOXDRmjLTNNrbyHARSM4GaW7BAWrvWeqZ27hzePAjuACALjRwpNWmSenEE1EynTvZ7J7hDLnnvPengg62gShB22UXq3p3UTKAmttlG2n9/6cwzpTZtwpsHwR0AZBnvLW+/Tx+pbt2wZ5Nfate21Y/Ro6VNm8KeDVC977+XPvssuJTMuJNPtr55pGYCiWnZUho40D63FywIr+IswR0AZJmvvpK+/poWCGG56CKppER64IGwZwJU7/337fKww4IdN56a+dJLwY4LRNHChdLSpVt+fvttS5cOA8EdAGSZkSPtkv124Tj+eGsc/3//Jy1ZEvZsgKqNGSM1amRplEFq3972oKYrNfO556RevX55QAzkqpEjbY+q9/Zzp05WMXP16szPheAOALLMiBFSx4627wWZ55x03322Mf4vfwl7NkDVxoyRDjkkPSncJ50kTZ5sK9lBKS21Eye//rX0wQfSf/4T3NhAGL7/3gK5/fazzw9J2nNPC/TCqLxMcAcAWWTtWkuzIiUzXB07SpdfLj39tPThh2HPBqjY0qVWej3o/XZxJ55ol0GlZq5ZI51yinTTTdK551o/PYI75LqpU6VataR9991y3U47SdtuK82cmfn5ENwBQBb54AML8EjJDN9110lt20oXX0xxFWSn996zy3QFd+3bSwceGExwt2iRpWG+8op0xx3So49KZ51lxWCmTUt9fCAMpaX297vHHlLjxluud85SM7/91u6TSQR3AJBFRo60cuaHHhr2TNCokXTnnfbB/dBDYc8G2NqYMda644AD0vccJ50kTZkizZ6d/BiTJtmewK++kt54Q/rTn+zg99RTpTp1WL1D7lq2TFq3zlIyyzv8cOmyy2xVL5MI7gAgi4wYIfXsaYEFwnfiidaS4rrrpO++C3s2wC+NGWOrYXXqpO85Uk3NfPFFe0+rV0/66COpX78tt+24o3T00dKzz0qbN6c+VyDTWraU/vxnS+Uvr0EDa6+TadUGd865x51z3znnZpS57gbn3CLn3NTY1zGVPPYo59xXzrkS59xVQU4cAKLmm29s/wwpmdkjXlxl9WrpKj7FkEW+/daKNaQrJTNu552lgw6qeXDnvXTjjbbH7oADpAkTpL333vp+Z54pLV4sFRcHM18gU+LplvXrVx7EzZhhKciZTM1MZOXuSUkVbe2/y3u/X+xrePkbnXO1JT0g6WhJXSSd5pzrkspkASDKRo2yS4qpZJfOnS2N7IknpPHjw54NYOI9tNId3EmWmjl1auKV/9autWqY119vwdu770otWlR83379rPAEqZnINRMmWMr+unWV38c564H3zTeZm1e1wZ33fqyk5UmM3UNSifd+rvd+g6TnJQ1MYhxkue+/p9gAEIQRI6Q2baSuXcOeCcr761/t/+aSS0gfQ3YYM0babrtfVuhLl5qkZi5ebHuGX3hBuvVW6cknbWWjMg0aSCefLL36qrRqVSDTBdLOe9uLWquW/Q1XZvfdbVUvk1UzU9lzd4lz7rNY2ub2FdzeRlLZOHVh7DpEyKZNlmf8z3+GPRMgt23aJL3zjqVkxvvkIHs0bmwV/iZPloYMCXs2gFXKPPTQzOzpaddO+tWvqg/upkyRevSQPv/cgrW//CWx97PBg61NwtChwcwXSLclS6wVyf77V32/+vWlDh0suIs3OE+3ZIO7ByXtJmk/SYsl3ZHqRJxz5zvnJjnnJi1btizV4ZAhCxdKP/4YXA8cIF9NmCD99BP77bLZySdLvXtL115rGQtAWL75RpozRzrssMw958knW+XYr76q+PahQ62ZumS9IY87LvGxDz5Y2mUXUjORO6ZMsUJGe+1V/X07dbJj5UwV5UoquPPeL/Xeb/bel0p6RJaCWd4iSe3K/Nw2dl1lYw7x3hd47wuaN2+ezLQQgvnz7XLaNOnrr0OdCpDTRo609I4jjgh7JqhMvLjKzz9LV18d9myQzzK53y7uhBPssvzJXO+lf/xDGjTICqZMnFhxWfiq1KolnXGGZS8sqvRIEcgOmzZJ06db0LbNNtXfv2NHCwIzlZWTVHDnnGtV5sfjJc2o4G4TJe3hnNvVOVdP0qmS3kjm+ZC94sGdJL31VmjTAHLeyJGWztSsWdgzQVW6dJEuvVR67DFbbQXCMGaMtMMOFVefTJe2bW2FrWxwt26dFUy55hrptNNsXjvtlNz4gwdboPjss8HMF0ino46yKrKJaNLE9q1WVlQoaIm0QnhO0nhJezrnFjrnfiPpX8656c65zyQdLumPsfu2ds4NlyTv/SZJl0gaKelLSS967z9P078DIZk/385EtG8vvflm2LMBctMPP1igQEpmbrj+ejuAvfhiiqsgHGPG2H67TDdHPvlk6bPPbP/Q0qWWpvzf/0o33SQ980xiqxiV6dhRKiwkNRPZr04dK2TUpoaVRH74wSrJplsi1TJP89638t7X9d639d4/5r0f7L3f23u/j/d+gPd+cey+33rvjynz2OHe+47e+92897ek8x+CcMyfb3/cxx1npY5Xrw57RkDueecdO2NNC4Tc0KSJdPvt0qRJtoIHZNK8edKCBZlNyYyLp2becotlGkydait5110XTMrZ4MGW7jZtWupjAemwcqW1xKlpkPbDD5bWP6OiXMeA1Un/UyDK5s+3TdD9+0v33GMHqQNpeJE3Ro2SHnkkmLFat5buvDMzld+yzYgR0vbbS927hz0TJOq006xq5tVX2wHvDjuEPSPkizD228W1aWNFU/77X3vPHjtWKigIbvxTTpEuu8xW7zLR4gGoqWnTpOJiac89a7ZS3ayZfU7MnJn+z3qCO6Rk/nypZ0/7atpUGjaM4C6f3Huvrdjuumtq46xfL738stSnjzRgQDBzyxXeW5BcVJSfgW2uck66/34rHHHttdbIFsiEMWNs706XLuE8/zXX2Em9++6reVpadXbcUTrmGNt3989/8p6I7BLvbde+fc33xztnAeEnn9he1ap646WK4A5J27TJWiHssotUr57tFxo2TCotzfw+AISjpMQ+iF9+ObVxNm60APGBB/IvuJsxQ/r2W/bb5aK99pJ+/3vLWvjtb4NdwQAq4r0Fd4cdFl4/zKOPtq90GTxYeuMNWx3p2zd9z4OaKy21PZe77Wbp6fnmm2+k5culXr2Se3ynTtJHH9mxUyItFPTxx0k9D4fgSNrChVZMYJdd7Od+/ayp4+TJoU4LGbJ5szR3rrT77qmPVbeudMEFtoI1a1bq4+WSESPskoOY3HTDDbaKcsklduADpFNJibUKCCMlM1P69ZO2247CKtloxgzptdekBx+svN9hlE2ZYosZya6at20rNWqU4O9u3LjEy3GWQ3CHpMXbIMSDu2OOsTOJVM3MD19/bStuQQR3knTeeRbkPfhgMOPlipEj7Qxe27ZhzwTJ2HZb6bbbLNXmiSfCng2iLsz9dpnSoIFV5Xz1VWnVqrBng7jSUttjueOO9r733HOZa8qdDby3Iip77WUBXjJq1bL92sccU80dvZeuuirpviIEd0ha+eBuxx3tJMOwYWHNCJlUUmKXe+wRzHg77WSFKZ54In+qrq5eLX3wASmZue6MM6zIxFVXWcoOkC5jxkitWlnbgCgbPFhas8YCPGSH9evtc7p3b+k3v7HiN/G+bZko7x8256RTT7WV5VS0bZtAIZZhw6QPP7S+O0kguEPS4j3u2rXbcl3//paWuWhRaNNChsSDu6BW7iTrG7ZiRf40sX3vPWnDBlog5Lp4cZXly6W//jXs2SCqvLf3jDD322XKwQfbPmxSM7PHNttYI+4uXazPW+fOdv2iRdJdd1n2gvfhzjGd4gFsEDUlJk6031eFNm+2Msx77GFRdBII7pC0eI+7ssvT/fvb5VtvhTIlZNDs2fZm36pVcGMefLC0zz5WWCXKHxJxI0bY7/CQQ8KeCVK17752cuKhh2xfBhC0r76yfe1RTsmMc85WxIuLOVmcDb75pvIUzO22s0D87bftxGwUU2l/+MHS7z//PJjx5syxhbkKj3P++197optvtr0qSSC4Q9LiPe7K6tLFrmPfXfSVlFjFrCArozpnB8jTpllFqagbOdLOwqezJDIy58YbLT394osproLg5cN+u7IGD7aD33zJ5MhW3luW4EsvVRyMNGpk6YrHHivNm2f75mfPzvw802nqVPu377xzMON16mTN0BcvLnfDunXS//2f1K2bLZMmieAOSasouHPOVu/eecfy5RFdJSXB7bcr6/TTbbP2/fcHP3Y2mTvXPgBJyYyO7baz3lzjx0tPPx32bBA1Y8bYfp3ddgt7Jpmxxx7SgQeSmhm2r76Sli61fsaVpQM7Z425zz9fatzY2vtERWmpnXDefffg2j907Gi/s5kzy93w0ENWre7WW1M6c05wh6SU7XFXXr9+dvLh3XczPi1kyObNllYQ5H67uEaNpLPPll55xVKQomrkSLukmEq0nHmmFZa68krpp5/Cng2iIr7f7vDDo7/frqzBg6Xp0+3gGpnnvfT++9awO5G+bC1aWOXrnj3t5/nzc7+i5ty5tsq2//7BjdmwoTVC/0Vwt3KldMst0hFH2FcKCO6QlPI97so69FA7c0PVzOhauNAKgaQjuJOkiy6yNguPPJKe8bPByJH2+ol61bt8U6uW7Rn94QfLrgGC8Pnn0rJl+ZOSGXfKKbbtiNW7cMyebamDvXolvpBUp47d13vbhzdkiBUQydV99FOm2N74oD+rO3e2IG/jxtgVt98uff+99I9/pDw2wR2SUr4NQln161tD5mHDcvfFjKoF3QahvI4d7W/o4YdtlThqNmywQgFHHplfZ+Hzxf77S7/7nQV5rDggCPm23y5uhx2sJ9gzz0TzsyDbrVghtWwp7b13zR/rnK287rKLFdl7/vnc3K5z5JG2/a1OnWDHLSy0LKW6dWV5r3feKZ10klRQkPLYBHdISlXBnWT77hYtsk2oiJ50tEEo7+KL7W/o9dfT9xxhGT/eKoqRkhldN99sqUyXXMJJLqRuzBj7vK3sMzfKBg+2FP3i4rBnkn+6d5cuuECqXTu5xzdubPvojzrKjhv+/W/LPswlTZumd5/rhg2SbrrJ9jPdfHMgYxLcISkV9bgr65hj7HaqZkbT7NlW4bFNm/Q9x7HHWk76Aw+k7znCMnKknQXs3TvsmSBdtt9euvZaady46FWOQ2aVltq+p3xbtYvr18+KFZGamTneW/sD71OviO2cFcY57zxrdRRUUZJMePttqy+QLpMnS49cNUf+4Yel3/42sNxPgjskpaIed2W1aGFLzuy7i6Z0tEEor3ZtS20bM0b64ov0PU8YRoywohvbbhv2TJBO/frZ5ejR4c4jHT74wMqeI/0++0xavjx/g7v69aWTT5aGDo1mD7VsNHeu9NhjwX727rSTbbdwTvrxR+nJJytoBZBFli61RuPff5++59hpJ6nnO/8nX6duoJu0Ce6QlIraIJTXr59tos3mFy+SU1KS3pTMuN/8xk4g/Pvf6X+uTFm61DZo0wIh+nbbzd4noxbcrV8vHX20pZwi/eL77Q47LNRphOrMM22/1quvhj2T6ItXyGzaVNpzz/Q8x4oVVkXz4YdtP+XXX6fneVIxZYqdZE5mv2GiWi2dqn2mP6uZR14mtW4d2LgEd0hKIsFd//52OXx4umeDTCotTV8bhPKaN7dqaU8/Lf38c/qfLxNGjbJL9ttFn3NSUZEdnEepGMTYsdLq1dbPdMWKsGcTbd7bXrPddqt8G0Q++NWvpA4dSM3MhPnzLdg65JDgi4jE7bKL9Ic/SH36WE+8xx+3/9ts2Z+8ebOtmO+5p1W0TBd3zdXa0Hh7Dd/ryi1VMwNAcIcaq6rHXVl7720fRuy7i5ZFi2zfb7oqZZZ38cUW2EXlQ33kSAtag+yZg+zVt68VEJgwIeyZBCd+wm7DBquCh+DNm2e1FTp3tt/xMceEPaNwOSedcYYFuosWhT2b6i1cKH36adizSM7779u+uAMOSO/zNGhg/fAuu8wyAdq121I9et68cAO9WbNspTitn9PvvSeNGKGVl1yjVXW209y5wQ1NcIcaq6rHXVnO2erd6NEWDCAaMlEps6wePaRu3aT778+es3rJKi21lbu+fdO7XxHZo3dvey+Mr9hGwfDh9jfcqhVpckH64QfpwQelgw+2Vaq//tXK0A8ZIv3zn2HPLnxnnGGfAc8+G/ZMKvfZZ3a88+WX9jrJtRX7Vatsj9nBB6dv1a68unWtRkM87XjhQumpp2w7xrRpdrwZhl13TWOVTO+lv/xFattW2197sY480t5Pg8LhBWqsujYIZfXrZ2c/4nsGkPvilf8yFdw5Z6t3X35pJ7py2ZQp1oiYlMz80ayZtS2Kyr67khI7q33ssdLxx1s1uVzsXZUt1q6VXnxRGjjQiitcdJH000/Wx3j+fFtFOe88a6Kc7/bYw6ouPv109p3oKy2118Krr0off2wF5zZvtj3WuaRxY+nSSwNptVa90tIK/yNbt7a+crVqWRGd++6z+g2ZDJQ7d5bOOiuNJ2Ffe83SOW64QbUbb6ODDrI9jkEhuEON1SS4O/xwy1emamZ0lJRY9bJM7v849VQ7SM71tggjR9pl377hzgOZVVRkVdeisD/t7bft8phjpBNOsMAu/neNxGzeLL37rnTuubYyd8op0qRJlp42ZYo0Y4Z01VXWCga/NHiw/X6mTQt7JlusW2eriZ98YlWQe/Xa0iZo4cJw51YTq1bZ32bduhlYtVuxwg4iO3aU/va3LSlBsoBqr72sWvavf20B57vvWiwopT+wX7ZMge5/28qmTdI110idOlkEKXu+6dPtuYNAcIcaq67HXVkNGtiBzZtvZt+ZNiSnpMRShjKZVrjNNnYg9NprufVhWd6IEZbD37Jl2DNBJhUV2UFTrq88S5ZqtscetnLfq5eddCE1s3reW0ByxRUWtPXpI738sq1QvPOOFbC47TZpv/227DvC1k45xYKPbNmD/eOP1jJg7lzbhnLkkfbZ2LSp7VvLhf2Bca+/boVNMnKsduON9mHeqpUFd/Fl2fvuszKastdBx45WNft3v7PK2aWlNsf33ktPxoD30gsv2FfaPPWUNHOm9Pe//y+K3rzZjm+mTg3mKQjuUGPV9bgrr39/a4Y5fXpap4UMyVQbhPIuvNDe2IcMyfxzB2HlSmn8eFIy89FBB1kGQ66nZq5ZYwdV8eIedepYOuGbb1pxFWztm29sv9w++1jgdvfdVqjihRcsZe/xxy3Qq1077Jnmhh12sJTgZ5/Njv1sdepYMHfmmbY3PM45O07KlbTMRYtsy0Xnzhk4uTBzpnTvvRa1jR275czGunVWQrN1a3uTefZZafVqObelJ+z69VKjRvY+dPfdtpc5yEraCxfansOuXYMb8xfWrpWuv94C2eOO+9/VDRrYQubMmcEE1wR3qLFE2iCUFT8QoGpm7istDS+469DB/paGDMnNA8l337WDEfrb5Z/69aVDD8394O699+z4q2zlxhNOsAyrd98NbVpZZfVqq+h4ww22srnzzpZi2bSpFYhYvFh64w1rys0+uuQMHiwtWWK/57DMnm2fh02a2KpSRcdEAwZIF1yQ8akl5f337e+xe/c0P5H30h//aBHaLbfYdW3bSn/+sy1bTZ9uy9uffy6dfrqluQwebGkvmzZpm21sm8aFF1qbgvHjpXvu2ZLyvnixPXThQgv6ahooTZliK8NdugT6r97i/vstkr711q2i6E6drKhSEE3TCe5QYzUN7lq1sjcM9t3lvsWL7cRTptoglHfxxXYmNBfTwEaMsL0DBx0U9kwQhqIiK0SSjc16EzV8uK1A9uq15bojjrAD3Fx8TQZh+XIL1v78Z6v4t9129ju56Sbbw3TjjXZC7MMP7YB0xx3DnnHuO/ZYafvtw0nNjFc8fuYZafJku66yla6GDXOjKvLixfbedNBBdiIqrd56yz4Mr79eatFi69v32suqCc2bZxHn6afbwePRR9tS6KWXShMmqGULrxNOkH7/e1sRj/eimz5deukl6dFHpTvusHYi9967ZZV3zhwL4ObOtUCq7Orvhg0WGHbtmqbfQ7xS0tFH29m+cuIN42fOTP2pMlToFFGRaI+78vr1szOZ331X8esZuSHTbRDKO/JIK038wAN29i5XeG9FJ/r0STydGdFSVGSXo0dbNlKu8d6Oy/r0sRSiuPr17f39tdesjH/U0wu/+Ub64IMtX59/btfXq2dtW664wnp3/epXW1LJEKz69W3l8z//sdWZJk0y87zr10uvvGKBUGFh9X3gvLc4pmXL9PeMS8W0afaa7tEjzU+0fr2t2nXuLF1ySdX3rVXLziL16mXR2fDhFlE/9JD9vMce0umnq9npp6tfvy0HJIceKu27r63krVhh8dSaNVsKxEyevOU1G9e8uZ04LimxKaatt92//mWbNP/+9wpvbtrUMlKXLEn9qQjuUCOJ9rgrr39/O1EzfLh09tnpmBkyIdNtEMqrVcvOfv/5z/aBtO++4cyjpmbNshXvK68MeyYIS9eulsWQq8HdV1/Z3/Bf/rL1bYMGSc89J40bV+EJ6Zzlvf27ywZz8WrRTZpYAHfaaXb82b37L4NepNfgwdLDD9uKcazgYFr99JNtAfv+e1s5TCR90TlbgFq+PLuDuyOPtNYHaf/7vecei6BGjrTcx0TVr299V44/3v4jXnlF+u9/bcXghhss0j7zTOn001V/223VsmXlRcsGDbKV9Xjgt2LFltTNzp0tjXannVL7Z1bo229tk+Cvf21LjZU488xg/h9yYMEY2aQmbRDK2m8/W1Fn311uKymx9+Sddw5vDuecY29+udQWIV4qnmIq+cs5W70rLt5S0juXDB9ul0cfvfVtRx1lr8lXXsnsnNJh7Vor2HfCCXaA2LmzdP75tgLTrZsdn336qR2wjxghXXutrdQR2GXWr35l+7AzlZq5erX9bZxxRs32pbVta1ussrVa+KZN9t6U9nThxYstV3nAgNR6AW23nZ0dGzPGctz/+U9bmrv4Ylv2Ovdc24hXyS+8dm1L6d1lFzsuPfTQLc3TnbMTcGkpKHPjjfbLvummKu8W1PsIwR1qJNngzjlL3Rk1ypa9kZvibRDCTL1q1sxOfj3zjJ15ywUjRlgWSYcOYc8EYSoqsjP/QZW7zqThw63IQEW91xo3tgDv1VdzM3CN27jRWhP84Q+2L+foo6VHHrE9MEuXWuuCSy+1VZi09wFDlZyz1bt3301ve5zFi+0yvt2rpu/hbdpY7PHjj8HPLVXffWf70ubNy8CTXX21bWq7887gxmzXztJhpk2zhuCnny69+KJF/nvvbemby5cH93zJmjXLNgFecEFCf0CjR6d+oozgDjVSkx535fXrZxvM338/8GkhQ2bPDi8ls6yLL7YPzCefTN9zzJtnm69TPRmxbp1VGWTVDkccYZejRoU7j5r6+WerWF62SmZ5gwbZCsXEiZmbV5BKSy29b/hw29Yzd661o/rtb63QAb3nss8ZZ9gCzbPPBj+299Z/8OGH7dhcSi6gb9vWLrOxP+vYsbbNJu19Vz/5xF5Mf/qTbZoPmnO2nDpkiEXjQ4ZY6c9LL7XVvMGDLac6rOXT666zJbnrrkvo7qWl0hdfpHbsQXCHGqlpj7uy+vSx1xtVM3OT97ZyF1alzLIOOMDaxPz738GvFGzYYCcDd9vNAtlttrHPh4MOsga6V15p1YzffFP67LPqVw/HjbN0HlogYKed7IRyrrVEePddW9WqKrjr398OfnOxaqb3VnXvueesmF2ulK/Pd7vvbu/L//lPsMftGzZYH8Jx42wvWirxSPPmlvK4eXMSDy4ttaDon/9MfgKV+P57KyzSo8eWSpNpUVpqL65WraRrrknjE8U0aSKdd56dZZo82dI033jDNsZ26WJLlUH0GkjUpElWvvPyyxOOojt1sr+XOXOSf1oSC1Aj8+dXnJaTiG22sQDvzTdtXy1nQnPLkiW2WpYNK3eSrd4NHmxnV1NJ4S9r1ixL+fz0U9tnc9BB0oIFltq/YIGlar3++tZn1Jo2tX2I7dtvuYx///LLdjIknteP/FZUZCcH1qxJ80FVgIYPt2Omgw+u/D7bbWfv76++WmELp6z2f/9nJ4quuKLigjHIXoMHSxddZJl5VdSpSNiKFRbkL11qabk9eqT2t1yrVvWFISv02Wf2D/vwQ/v51FOTP/iqwNixdjIm7a15nn7aAq2nn85cWdO4/fe3F/Ztt1m65pAhVo3tmmusOMv559sHczr7VVx9tUX3l1+e8EPatbPPhpkzk++3l5Urd999F/YMUJkFC2q+366s/v0tQPzii6BmhEwJu1JmeSedZGdFgyis4r302GP2WTBvnjR0qKXjnH22VXl97DELImfNsoPyxYst0+TFF6Xbb7d0rg4dLC3t+eetafFpp9nB8MMPW8GFRo1SnydyX1GRrQx88EHYM0mM9xbcFRVVn7ExaJCt7k+fnpm5BeHOO60X1m9+YwskuRSUwloi1K0bXGGVb76xbIzTT7cijEH+PSS0urhypaUvHnCAlWqNF+AIsBrdypX2Gu3ePc2fSytX2ofhgQfaLzQsjRpZJbbx4y1ovuCCLb2JOna0F/7SpcE/7zvv2Ne119oZ4ATVqmXTmjUryRVfSfLeZ92X1M3/978eWWbjRu9r1/b+2muTH2PhQu8l7//xj+Dmhcx47DH7v5szJ+yZbHHNNd7XquX9/PnJj7F8ufcnnmj/tt697W80VStXej9jhvdvveX9Qw95P3Nm6mMiGlav9r5ePe8vvzzsmSTms8/stfHoo9Xfd+lS753z/vrr0z6tQDz+uP3bTjzR+02bwp4NknXccd7vtJMdowRh9epgxon75hvv77zTLitVWur9c89536qVvYguuMD7H36w2zp18v6IIwKd08KF3v/8c6BDbu2KK+wFNmFCmp8oCWvWeP/009737GlzrFPH+xNO8P7FF72fPNkODEpLkx9/82bvu3Xzvn1779etq/HD58zxfuRI79eu9V7SJF/DOCorV+4aN7Yz4ezNyi6LFiXX466sNm3shBT/t7mnpMTSOMJsg1BefG/MQw8l9/j335f22ccaMP/zn7YXqk2b1OfVpIn1NTvmGJvjnnumPiaioWFDW9HNlX13VbVAKK9FC1ulzoWWCEOHWrGUoiJrmRX15utRduaZtm3gnXeCGS/odOmmTS3dc9GiSu7w1Vf2h3jaabbB+5NP7EOtWTO7fcAAq8q1YkXKc4mvHrZpY8faaTNrlvUNOeecmvWOyJRttrGc3rFjLZXsD3+w3/HJJ9tBarNm0rbb2ibp/v0ttzae3jlhgq30VbUU+/LLtr/jxhutT18Ndehg202SbY2QlcHd7rtb7vRJJ9nvHdkh2TYI5fXrZ6vjmdzTitSVlEi77ppdJcB33tk+9x591KpSJmrjRsuUOPxwe48fP94KpaQz9R6IKyqy7KB0ZAIFbfhw+zxu3Tqx+w8aJM2YsaXCYDYqLrYtTD162B7BJI69kEWOOcb6EmZ6S1eimja1r60qZq5ZYx9Ee+9thTceeMACu/LB0MCB1iNtxIiU5zJ8uPTWWykPU70//ckik7//PQNPlqLOna3QyqJFFri99JLttzj7bIuyvv7azgBdeaVVVSsstOpYDRvamdsjj7T9e7fcYvf74AOrjLnXXimlo5aW2laoZGTRYdoWtWtLb79txW3697dehQccEPasEFRw17+/ncx4+207cRJ1y5dbRd5GjX5ZcGPnne2AKZuCparMnp0dlTLLu/hiW3l78UU7g1udOXOsaMqECVZI65570nwGEyinb1/b0//OO+FuRanOTz9ZPYcrr0z8MYMGSZddZitj2Vic5JNP7Fi5Y0c7yOW1n/vq17eFkmzWpk25lbs33rDVogUL7IPrX/+qvJpiYaFtMH/9dQsukvTTT7aYVFCQ9BCJeftte3HddpsFQbmifn0LrCtbaVyxwv6/5s+3y7JfU6ZIy5b98v5vvplSSsBnn9l/eTKy9rCyeXPrBXTIIVZC/IMPSG0KWyo97so64ACrivvmm/kR3N1/v53M2XHHrVcra9e2N/2y1RXLX2ZDIY54G4RevcKeydb69LH3hgceqDq489423V98sQXUL75o2QFApu2/v7TDDpaamc3B3ejRlopfVQuE8tq1s2OjV17JvuDu88/t39KypR1fxLPegHRr00b68ktp7RfztM1f/mB7U7p2tb0B1X2w1q5tKU+vvmppJ3XrJjWHcePsGO6QQ5J6eGI2bLCzOx07WvAaJdtua/s49tmn4tvXrNlSWnvTppq9cVagSxc7oX7DDTV/bNYGd5J9SIwebX+IRUV2BjHVwALJmz/fVppSTWGpVUs69lg7uN6wIbmeebli/XqrxHv00ZYOsXq1vfbjr/+ylx98YGkb5asj7bDDlkBvl13sfTPAisgJ+e47a0CfLZUyy3LOKkZfeqlltlR0VnLFCunCC63Eda9eFmzzXoKw1KplJyVGj7aTDtlaofHtt63FwYEH1uxxJ5xgRfK+/jp79ujOm2crpvXr2++9VauwZ4R80qHNep025zY16HaLBWu3327BT6KB2sCB0hNP2IFC7941fv6VK21xaf/9a1S4sebuu89yst96K9oHdxVp2NCa1HXqFMhw9eol/yvM6uBOsuB/5EhrRVFUZH/XzZuHPav8NH9+6imZcf372z6pDz6wg5yoev5521fzxz/az40aWXp3584V33/zZunbb7cO/BYssLTI11/f8rmQSdnWBqG8s86yNLcHHrDPv7I+/NBWRxYutJT4v/yF4gkIX1GRneD68svkexmlU2mpBXdHHlnz1PHjj7fgbuhQO+kStiVL7Pe9dq3t4+/QIewZIWt16WJH1LvssuWrffst32+3Xc3PxowerdYXX2wfpCedZP032rat2RhHHGF72F5/Pangbvp0O76oqldlypYutT03xxyT8qoVUpP1wZ1kZxqGDbOzbkcdZXvw0nrmARWaPz+4N4Y+fewM6rBh0Q3uvJfuusv21B5xRGKPqV3bVpQqW1U66CBbncq0khK7zMY9d5JlS5xxhvTUUxb47rCDZUXcfLO1CdplFwvyCgvDnilgiorsctSo7Azupk61oCiZY7SOHe1979VXww/ufvzRAtTFi62Qyl57hTsfZDHv7cN63jzbnF1cbCkrZTVtWnngt8su0vbbbwn+Fi2ywiIvvijtvrtK3x6plQf21XbbJTG3Ro1sbm+8YVUoaxhgduxoMev22yfx3Im65ho7g3LXXWl8EiQiZ2rD9expG2Y/+8yq461dG/aM8sumTdbcM6iVu0aNLKh7880EG3vmoPfek6ZNszTKoNKuCgpsQ3RpaTDjJaqkxALPTKeD1sTFF1vFzMcftxMRhx4q/e1vFvRNmUJgh+zSvr2dLMnWlgjxFghHHZXc4084wTIzwqwIunq1bVX68ksrulTT9FLkGeeke++1A5Pp0y2X8fvv7UP3lVesouJZZ9mLd948SxO5/HL7Y+/Wzc4qxvdlHXuspee98YatZk2fruGb+urhh1M45hk40D7cZsyo8UObN09zR4KJE+33cemlFkkiVDkT3En2Wnn6aUurOOUU21eKzAiix115/frZybGvvgpuzGxy111WROXXvw5uzIICO5GY6d/Z7Nn2f5/kPu6M2HtvOwl0++3Svvva59+zz9pqHiv9yEZFRVZPYcOGsGeyteHD7WCwRYvkHj9okB3EJlvtLVUbNtgx98cf217b+EopkDDnLGA74AD7g/7Tnyz4e+MNW2lYscLKYU+ebMvUd95pfd06dLB9AEceaVV8/vpXqUEDtW5tCxPLlyc5n3797LKGL6pvv5Vmztx6P39gSktt/2CLFvZvRehyKriTrMfjAw/YiZVzz838Cka+CqoNQlnx96k33wxuzGwxe7alnF54ofVRC0q8WEimUzNLSrI3JbOs3//eir/stZetmp52WtgzAipXVGSrS+PHhz2TX/r+ewuKUtk2s/fetkf31VeDm1eiNm+2SswjR0qPPGJBHhA45yzPcf/9baPpH/9ovXVee80+gF5++RcbPNu0sctKm5lXZ6edLAXljTdq9LCJE21KaSvc9Mwz9oZx662cSc0S1QZ3zrnHnXPfOedmlLnuNufcTOfcZ865oc657Sp57Hzn3HTn3FTnXGCHoxdeaHtp/vtfS3mLalpfNklHcNeuna2wDBsW3JjZ4t57rQjBRRcFO26nTpbSmsngLt4GIVuLqZR14onWx+r994P9WwXS4fDDLd0521IzR42y1/3RRyc/hnO22FFcbPveMsV7e9998UVbxT/33Mw9N1CV5s1t39tWzcxrYuBAi9a+/Tahu3tvJ5t3392q9Abu55+tSlmPHok1mkVGJPJf/aSk8ln3oyXt5b3fR9IsSVdX8fjDvff7ee8DbZt4zTW2Qn7ffbavBukVVI+78vr3t0IXSacpZKGffrLU89NOC75/Z+3aliGSyeBu2TLbepALwZ1z9hmTK43hkd+23db+XrMtuBs+3FLKU212PGiQ7dfO5Am8a66Rhgyxy8svz9zzAtWpVcvaSSW9cidZ0Qkp4ZSnJUvS3Mbo73+3akX33pum6BHJqPZ/wns/VtLycteN8t5viv34saQa1nRNnXN2Vu6ccyy4u+eeTM8gvwTV4668fv0shWbEiGDHDdMjj1iqVbz9QdAKCqxAyKZN1d83CNleKRPIZX372smaTK5uVWXzZktnPOqo1FuGdO9uFd8zlZr5r39ZZtjvfmfZPUC26dUrqU4GW3TpYqmeCaZmprWNUUmJ7TM880wqlmWZIMLscyW9XcltXtIo59ynzrnzA3iuX3DOztAdf7ylZz79dNDPgLgge9yVFd+wH5V9d5s22WryYYdJ++2XnucoKLBN2V98kZ7xy4sHd7mwcgfkmqIi2zv+7rthz8RMmmR77oJoU1Wrln0+jxixdUX5oP3nP5Ydduqp0v33Z29jeOS3Dh2k3XZLYQDnLDWzojYNFfj2Wzsx37hxCs9ZmcsvtzzTW29Nw+BIRUrBnXPuWkmbJD1TyV0O8d4fIOloSRc753pVMdb5zrlJzrlJy5YtS3gOdepYRbw+fSy3PqzKXFGXruCuVi2rgjpiRDSqn776qrWMSNeqnbSlnHGmUjNLSuz/iT1sQPB69JCaNMme1Mzhw+313rdvMOOdcIK1KElndsZnn0nnn297GJ96KvUVRyBdvJfmzg0gNXP9etscW41TTrF2QIEbNcpWD6+7TmrVKg1PgFQkHdw5586W1E/S6d5XXNLEe78odvmdpKGSelQ2nvd+iPe+wHtf0Lx58xrNpUEDaehQazNyyinW5BzBCbrHXXn9+9s+tQ8/TM/4mXTXXXZW7thj0/ccu+1me3UyFdzF2yDUq5eZ5wPySd26FpRkU3B34IFWAT4IhxxihSReeSWY8cpbuVI66SQrWvjcc7xPIbs5Z5UrP/44hUEOOcT+4BNIzXROatgwheeqyMaNli63++52iayTVHDnnDtK0pWSBnjv11Ryn0bOuSbx7yX1lVTzzosJatLEPpR2281OamS6VHyUpaPHXVlFRfaBnOtVMz/+2L4uvTS9Z45r1bITGRMnpu85ysqVSplArioqsrP5c+aEO4+lS+2zM4iUzLjatS2LbNgwW8ELkvfSeefZe9Tzz0stWwY7PpAObdumWDGzTh07gzxsWJXN60aNStNJowcekL780vbbBV2IAYFIpBXCc5LGS9rTObfQOfcbSfdLaiJpdKzNwUOx+7Z2zg2PPbSlpHHOuWmSJkh6y3uf1rIZO+xgf8w77mibwWfNSuez5Y90tEEoq3FjO3Od6/vu7r7bVtTOOSf9z1VQYG101q9P7/OULaMMID3iDbbDXr2Lp04GGdxJlpq5apX0zjvBjvvAA9by4JZbrFAFkAvatLECSqtXpzDIgAHSDz9IH31U4c3eS1OnWqeCQP3wg3TDDdagPd6sGFknkWqZp3nvW3nv63rv23rvH/Pe7+69bxdrcbCf9/53sft+670/Jvb9XO/9vrGvrt77W9L9j5HsRTN6tB303nFHJp4x+tId3En2HjFrVu4G5F9/bf1KzzsvTRuXy+ne3TIjZqRtLdz88IO0YgXBHZBOHTtam5mwg7vhw619S9DFoHr3thNfQVbNnDjR2iH16yddeWVw4wLplnIzc8mCq7p1K03N/PZbac2aNFS5vu8+Oyi4/XaqFmWxSDal2H13qWdP6YMPwp5JNKSrx11Z8RNAuZqaef/9dqbskksy83zx/lPpTj+mDQKQfs7Z6t2771aZZZVWmzZZ5svRRwd/zFavnu2tfv31YFq4LF9u++xat7YCKrTXQi5p3dpeYykFd02b2lmTSoK72bPtOVKqzFneqlXWz27gQGmvvQIcGEGL7Ftiz56WEvz992HPJPelq8ddWbvsIu2zj5Wzrrg8T/ZatcpacpxwgtS+fWaes317S0NO97472iAAmVFUZIWlwtov/vHH9vxBp2TGDRpkQdn776c2TmmpdNZZtjLx4otSs2bBzA/IlHr1pAsvDCCVeMAAS3eaOXOrm2bPtr19gRZTeeQRyye96qoAB0U6RDq4k6Rx48KdRxSkqw1CeX/6k+WIv/VW+p8rSE89ZVkK6Wx/UJ5ztnqX7gPB2bPtrPiuu6b3eYB8d8QR9roOKzVz+HArfhLf/xe0I4+0A81UUzNvu80yPO64w9pIALmoRYsACq/172+X5VbvvLcT8vvsk+L4ZcX3Oh12mJXTRVaLbHDXvbutNI0dG/ZMcl+mgrtf/9oafN54Y+6s3pWWSvfcIxUWSgcdlNnn7t7d9tytXZu+5ygpkXbemYJYQLrtuKO0//7hBneHHGJ749KhYUNL+Rw61N43kzF2rHTttZaSmakUeCAdli+3AkY//ZTCIO3a2ZtGueDOOSumGe+JG4j//tfySK++OsBBkS6RDe7q17cDbvbdpSbdPe7KqltXuuYaSzUcOTL9zxeEt96y1a0wWr0UFNj+nGnT0vcctEEAMqeoSBo/3lK9M2nRInsfSVdKZtygQdLixcn1+Fq6VDr1VDsB+Oij1HJAbtu40V4HCxakONDAgVYx87vv/nfVjz8GfIJ882bpX/+yQDJdS/sIVGSDO8lSM6dMyfwHZZSku8ddeYMH236yv/0tN1bv7rrL8tpPOCHzzx0vqpLOfXe0QQAyp6jIDvpS3ZdWU2+/bZfpDu769bP9RjVNzdy82TI7fvzRqhI3bZqe+QGZ0ry5vRZSKqoi2b477/+3n6W0VHr44S2v6UAMHWp7+66+mrMqOSLywd3mzXYmFMnJRBuEsurVs/ePjz+Wiosz85zJmjZNGjNG+v3vbdUx01q3trLl6dp3t3y5HUxRKRPIjIMPlho0yHxq5vDhluHVtWt6n6dpU9tb+MorNTt597e/WSXRf/874H1EQEhq1bLP8JSamUvWt6Rdu/+lZi5cKK1bF+Axm/fSP/5hBwKDBgU0KNIt0sHdQQfZC4jUzORlOriTpLPPttWwbF+9u/tu20dy3nnhPL9zllOfruCOSplAZjVoYBX0Mhncbdhgz5eOFggVGTTIPlemTk3s/iNHSjffbJ8L55yTxokBGda2raUbp9QexDlbvRs1Slq79n9F0Dp0CGiS77wjTZ5szSRTrgCDTIl0cNe0qaUIU1QleZnocVde/fpWaXfcuMynJyVqyRLp2WftgGP77cObR0GBtfxIR+oxwR2QeUVF0hdfBJCulaBx4+z9I90pmXEDB9rB5yuvVH/fhQulM86wlloPPJD+uQGZ1LattM02KRZVkSy4W7NGKi7W7NlWBK1BgyBmKFu1a93a9swgZ0Q6uJMsNfOTT6yKK2ouEz3uKvKb30itWtnqXTZ68EE7433ppeHOo6DAVjcnTw5+7HgT1MDOAAKoVrxeQaZW795+29LK+/TJzPPtuKN06KHV77vbuFE65RRLMXvppYD7dQFZYM89pcsvt9dESg49VGrSRBtefkNLlgS4leKTT2zvyeWXUzI7x+RFcLdunfTpp2HPJDdlqg1CeQ0aSH/5i/Tee9m38rpunQV3/fpJHTuGO5du3ewyHamZJSW2YhvYGUAA1dp7b+uBlangbvhwOzZs3DgzzydZauaXX9pXZa66yooAPvqoHQQDUeNcQKnQ9etLRx+tuiPf1OmnlWqvvQIYU5JuvdVSk8Lae4KkRT64O+QQu2TfXXLCCu4kez9p2VK66aZwnr8yzz4rLVsWTvuD8lq2tAAsXcEdKZlAZtWqZUVH3nkn+X5wiZo/31JAM5WSGXf88XZZ2erd0KHSnXdKF19sq3dAVH3yifTUUwEMNGCA3JIl2uOnicH0qvziC+m116xiXJMmAQyITIp8cNeihdSpU/at/uSCTPa4q0jDhtIVV9hBzkcfhTOH8ry3Qir77CP17h32bEy6iqrMnk2lTCAMffta26rp09P7PJlqgVBemzbSgQdWHNzNnWuFU7p3l+64I7PzAjJt0yZp3jxp9erUxtnc92j5WrW19oU3qr9zIv71LzsI+/3vgxkPGRX54E6y1MwPP7S2CEhcpnvcVeR3v7N89GxZvSsutgOuyy7LnnYvBQUWiKW8KbuMH3+UfviBlTsgDEccYZfpTs0cPtz21IaRXn7CCbZXeN68LdetWyedeKKtXr74Itt8EH1t29plqgWUvl7VTPN37qVab76e+qS+/lp65hlLn0p5QyDCkDfB3YoV0owZYc8kt4TRBqG8Ro2kP/9ZGjFCmjAhvHnE3X23rQafdlrYM9ki3sw8yH2lc+bYJcEdkHlt2khduqQ3uFu3zk5WHXNMOCeq4qmZQ4duue6yy6QpU6Snnw73cwfIlFat7GRGqsHd7NnSrE4DVL/k8y0f4Mm6/XZ7U7j88tTGQWjyJriT2HdXU9kQ3EnSRRdJzZqFv3r31VfSW29JF16YXUVG0lFUZfZsuyS4A8JRVGTbCdatS8/4778vrV1r/e3CsNtu0r77bknNfOYZ6eGHrZ1Wv37hzAnItHr17IRxqs3MS0qk1X0G2A9vvpn8QMuWWRWjM87IbA8sBCovgrv27W3pm+CuZsLocVeRJk2kP/1JGjYsPSX/E3XPPfZGfOGF4c2hIs2a2YFSkMFdvMfdbrsFNyaAxBUVWWD34YfpGX/4cDtJddhh6Rk/ESecYPup331XuuACOxF7yy3hzQcIQ9euVhwtWT/9ZHt0Wx3cwZpCvp5Caua999obz5VXJj8GQpcXwZ1zUq9edhbU+7BnkzsWLLCUgWzY93DJJdJ224W3erd8uVW0Ov301N6E06WgQJo4MbjxSkq2NFgFkHmHHmr959KVmvn229Lhh4fbP27QIPtMPvpoS8F//nmpTp3w5gOEoWdPK6KUrGXL7L1ijz1kDc0/+MAOWmpq5Urp/vstZ7pTp+QnhNDlRXAn2YtnyZLUU5HzSZhtEMrbdlvbj/Haa9K0aZl//iFDpDVrsqP9QUUKCiwYX7YsmPFmzyYlEwhT48bSQQelJ7ibPdu+Ml0ls7wuXayH3caN1mKmdetw5wOExXtpw4bkHrvHHtYXeIcdZMHd5s1bSuHWxJAhtgx41VXJTQRZI6+CO4nUzJrIpuBOkv7wB6lpU+nmmzP7vBs32sms3r2tBUI2CrqoSkkJbRCAsBUVWYGRoE7axIXVAqE856QHHpCee07q0yfcuQBhibdYSuVETp06scJI3btLO+1U89TM9eutuWSfPjYGclreBHedO9veJIK7xITd464i229vAd7LL2e28unLL1slqz/+MXPPWVMHHGBv7EHsu1uxwg4mWbkDwlVUZAd+xcXBjjt8uK2YdegQ7LjJ6NOHRuXIb87Z8WkyFTPnzJEeeshaF0my0pv9+1uJ8fXrEx/oqaekxYulq6+u+SSQdfImuKtVy1bvCO4S8+23FuBlU3AnWVpk48aZ23TvvXTXXbaKFfZZ7qo0bWoHa0Hsu4sXUyG4A8JVUGB7jYNMzVy9Wnrvvex+PwPyTZs2tnVo48aaPW72bOn77+0Y4H8GDJB+/tlK4iZi82ZrWl5QYClKyHl5E9xJFtyVlNjJCVQtW9oglLfDDlZc5YUXpJkz0/98H31kAdOll9oJgmxWUBDMyl08uCMtEwhX7dq2sjV6dHDFwMaMsRP6BHdA9mjbViottQCvJmbPtuO0unXLXNmnj1VKSjQ18+WXbQnw6qvDaXqJwGX54Wqw2HeXuGwN7iRri7DNNplZvbv7bjtzftZZ6X+uVBUU2Irrt9+mNk48uMuGlC0g3xUVWYr8rFnBjDd8uFWmjH8eAghfmzZ2WZN+d8uXWzrmVidit9nGym++8Ub1Z4W8l2691VJ/jjuuJlNGFsur4G7//e1kBsFd9eLB3c47hzqNCjVvbo3Nn312S7PtdJg71xrsnn++pYJmu/ge6FSLqpSUWNW6Ro1SnxOA1BQV2WUqqZnr19vr+t13rV9onz7Z0eIGgGnSxF6XNTnmih//VJhlM2CARYpTp1Y9yMiRdp+//CX705OQsLz6n6xb10pLE9xVb/58O8DP1gOAP//ZGor//e/pGb+42M5s16tnaaC5YL/97L051X13s2eTkglkiw4d7Kuy4M57q14+bZr05ptW2feKK6xIyYEH2vt4gwb2mu7Tx1YBTzgho/8EAAno2XPLCl4idtjBTuo2a1bBjf36WYpldamZ//iH5YSefnqN5orslnftQnv1km64wT4Mt9su5MlksWxrg1Bey5bS734n3Xef9Ne/BpdCuGGDjXfbbVLHjnaw1K5dMGOnW8OGUteuqe+7KymxzwUA2aGoyDIVnntO+vpr62kZv1ywwGonlFW/vq0AtG9vDcLbt9/y8667Zvd7O5CvNm60bRUtW9oJmersvnsVhc+aN5d+9StLzbzhhorv89FH0tixtv+kXr0kZ41slHfBXc+edqbzww+lY48NezbZa/58W+XMZldcIT34oJ14euSR1MebNUv69a8trfG886xKZq6lJhYUWNqV98nti/75Z2npUiplAtnk6KOlhx+29yfJ2sK0by/ttpt0+OG/DN7at7fjOjKsgNzy7bfSE09Ip51mW+Cq8tNP9hm/7bZV3GnAAEu3/Oabis9S33qrLf/99repTBtZKO/e/gsLLT2T1MzKZWOPu4q0bm1B2JNP2tnrZHkvPf647cmcN8/22Q0ZknuBnWQpGsuW2Vn9ZFApE8g+AwZI48ZZf8+VK62QwpQp0muvSffeK11+uXTSSVKPHnbWn8AOyD2tWtlrN5F+dx99ZCnYmzdXcaeBA+3yjTe2vm3GDEtN+sMfcvNgB1XKu4+Ahg2lbt0I7qqSrT3uKhLfA3zrrck9/scfpZNPln7zGwv8p02Tjj8+2DlmUkGBXSabmkmPOyD7OCcdfLClXTdpEvZsAKRDvXpSixbVV8z03jKNOnSwdimV2nNP219SUXD3z39aUJcrRQVQI3kX3EmWmjlxorR2bdgzyU7Z3AahvLZtpXPPlR57zFYba2LsWGnffe3s9623WsGCtm3TMs2M2WcfW5lONbjbbbfg5gQAAKrXpo2dYK+qg8EPP1haZkIZNgMGWHPLlSu3XDdvnm3gveCCSqqxINflZXDXq5dtXP3kk7Bnkp1yKbiTpKuusjfCf/0rsftv3Chdd5102GFWeOCjj2wFsMozYDmifn1p772TD+5mz5Z22ik3Wj8AABAlbdtK69ZZAFeZeAuEhDJsBg60g56RI7dcd/vtlvL0pz+lNFdkr7wM7g4+2NJcSM2sWDb3uKtI+/bS2WdbUZXqGnjPmWMrt7fcYo+ZMmVLf7io6N7dgrvqepdWpKSE/XYAAIShY0fbJlJVNffZsy19M6GK7wcdZEVT4i0Rli61IgNnnVWzvgvIKXkZ3G2/vbTXXpkN7saMka6/3k6gZLts73FXkauvtn2Ct91W8e3eS//5j/WCmzlTeuEFe3+L4gpVQYGlbMyZU/PHlpSw3w4AgDA0amSFLetUUcv++OOl445LcMData230Vtv2QHoPfdI69dbuXFEVl4Gd5Kt3owfbwFBupWWWmrzjTda8Y7169P/nKnI9h53FenQQRo8WHroIWnJkl/etmKF9ec880wL7qZNs/+HqEq2qMqqVdLixQR3AACEZcECOz6tTJMmdgI+YQMH2hnf4cOlBx6QTjzRlggRWXkb3PXqZQezU6em/7neftuW0Y87zop3DBworVmT/udNVi4Gd5J0zTXWhPyOO7Zc99FHFtC9+KJ0003Se+9ZGmeUde1qDVBrGtzFV/pIywQAIBwlJVbgraJMrwkTkjhuLSqyVKzzzrPCKlddFcQ0kcXyNrjr2dMux45N/3PddZdtkn3xRavqOGqUNaX9+ef0P3dN5UqPu4rssYc1+f33v2317m9/s/9n56xH1HXXRaNoSnXq1rWAduLEmj2ONggAAISrTRvL+Fq8+JfXe2/HMrNm1XDAxo2lPn2sCW7fvtIBBwQ2V2SnvA3uWre2VL5077v77DOpuNhaidSta2X7n31W+vBDO5ny44/pff6ayqUedxW59lprcdG1q3TDDZaOOXWqdOCBYc8sswoKpMmTq2lwWg7BHQAA4Yq3ZCrfzPy772zhLansmkGD7PLqq1OaG3JD3gZ3kq3qjBuXXFXBRN19tzVOP++8Ldedeqr0yitWqfHww+0Fmy1yrQ1CeZ062d66jRul//5XevppqWnTsGeVeQUFlnZckzN8s2dLLVvSJBkAgLA0bixtu+3Wzcxr1AKhvHh58MMOS3F2yAV5H9x9/71VT0yH776TnnnGKs6W7xM5cKD05pt28H3ooVufoQlLrgd3krVEWLzYVu3yVTJFVaiUCQBA+Nq2lZYv/+V1s2dLrVoleQK2dm3br4G8kNfBXa9edpmufXcPPmgFPi69tOLb+/aVRoywszO9em0JrMKUaz3uKlK3rpUTzmedOtnvoCb77gjuAAAI34AB0vnnb/m5tNS+KHKJROR1cLf77paGlo59d+vWWWGPY4+V9tyz8vv16mV78pYvt+9rvFE2YLnY4w5bq13b9kwnunK3Zo2tHlMpEwCAcNWvb8Xg4mrVsubmZFUiEXkd3DlnqZnpCO6ee87SMi+7rPr79uhhJfrXrbMAb8aM4OeTqFxtg4CtFRRYin0ivRzjbRBYuQMAIFzeS2+8Ya0PJFu1k34Z8AGVyevgTrLg7uuv7Sso3lshlb33tuqzidh3X0sPrV3b9uB9+mlw86kJgrvoKCiwEwZffFH9famUCQBAdnDOqpfPnGnHlPfeawUAgUTkfXAX33cX5OrdmDHWAuGyy2p2lqVTJ5tH06ZS797WLiGTcrnHHbbWvbtdJrLvLqUqXAAAIFBt29p2iW+/lX76iUrWSFxCwZ1z7nHn3HfOuRllrmvmnBvtnJsdu9y+kseeFbvPbOfcWUFNPCh7723BVJBFVe66S2re3Bpq11SHDjaXnXaygivFxcHNqzq53uMOv7TbblZOOZF9dyUl9je77bbpnxcAAKhamzbS+vXS+PG2UMDJVyQq0ZW7JyUdVe66qyQVe+/3kFQc+/kXnHPNJF0vqVBSD0nXVxYEhqV2bengg4NbuZs1Sxo2TLrwQqlBg+TGaNfOArwOHawgy1tvBTO36kShDQK2qFVL6tYt8eCODw4AALJDvJn5jBlW6C7fq4AjcQkFd977sZLKddzQQElPxb5/StJxFTz0SEmjvffLvfc/ShqtrYPE0PXsKX35pfW8S9W990r16kkXXZTaOC1bWpGVvfeWjjtOevnl1OdWHYK76CkokKZNs7N/VZk9m+AOAIBsseOO0vax5RAqWaMmUtlz19J7vzj2/RJJLSu4TxtJ35T5eWHsuqzSs6ddprpZ9ccfpSeesHTMlhX9Nmpohx2kd96RCgulU06Rnn469TGrEoUed/il7t2ljRul6dMrv8/atdZrkQ8PAACyg3PSeedZDYYuXcKeDXJJIAVVvPdekk9lDOfc+c65Sc65ScuWLQtiWgnr3t16iqSamvnII9YvLJH2B4nadltp5Eh7cZ91lvTQQ8GNXR497qKnoMAuq0rNnDvXLlm5AwAgezRsaIX/WrQIeybIJakEd0udc60kKXb5XQX3WSSpXZmf28au24r3foj3vsB7X9C8efMUplVz9evb6lgqRVU2bpTuu086/HBraxCkRo2kN9+U+vWzvXx33hns+HG0QYie9u1tBbiq4I42CAAAANGQSnD3hqR49cuzJL1ewX1GSurrnNs+Vkilb+y6rNOzpzV8XrUquce/+qqltv3xj8HOK65BA3uOk06SLr88PW0SCO6ixzlbvasquKMNAgAAQDQk2grhOUnjJe3pnFvonPuNpFslFTnnZks6IvaznHMFzrlHJcl7v1zSTZImxr5ujF2XdXr2lDZvtpKzybjrLtuzdOyxwc6rrLp1bU9fy5bSNddYY8ug0OMuurp3t2pba9ZUfHtJia3ubZ9VdWwBAABQU4lWyzzNe9/Ke1/Xe9/We/+Y9/4H730f7/0e3vsj4kGb936S9/63ZR77uPd+99jXE+n6h6TqoIOsdHwy++7Gj5c++US69FIbI50aNZKuu85SSEePDm5cetxFV0GBnbiYNq3i22mDAAAAEA1pDkVyR9Om0v77J7fv7q67pO22s4InmXDeebaXKsjVO9ogRFd1RVVmz6ZSJgAAQBQQ3JXRs6etwFXXE6ysBQukV16xgKtx4/TNraz69aUbbpA+/VQaOjSYMQnuoqt1a2mnnSoO7tats3RcVu4AAAByH8FdGT172sHup58m/pj777eiFb//ffrmVZEzzpA6dbIUzc2bUx9vwQK7bNeu6vsh9zhn++4mTtz6tnnzbPWX4A4AACD3EdyVccghdpnovrtVq6y33YknZj4oqlNHuukm6csvpWeeSX28+fOlVq2sKieip6BAmjlT+vnnX14fr5RJWiYAAEDuI7gro0ULWw1LNLh74glpxYr0tT+ozqBB0gEHWIrmhg2pjUUbhGgrKLAVuilTfnk9Pe4AAACig+CunJ49pXHjqk91LC2V7rlHOvBAa4Aehlq1pJtvttS6xx5LbSyCu2jr1s0uy++7KymxFgjNmmV+TgAAAAgWwV05PXvaatyMGVXfb9gwac6c8Fbt4o46ytJJb7qp8j5m1dm8Wfr6a4K7KGvZ0lKHy++7o1ImAABAdBDcldOzp11Wl5p5113SzjtbamSYnJP+/ndp8WLpgQeSG4Med/mhe/eKV+5IyQQAAIgGgrty2reX2ratOribOlV67z2rkFmnTqZmVrmePW0F79ZbbdWxpmiDkB8KCiyY+/FH+3n9eluxJbgDAACIBoK7cpyTevWy4K6yBuF33y01aiT99rcZnVqVbr5ZWr5cuvPOmj+W4C4/xJuZT55sl/Pn295RgjsAAIBoILirQM+eluY4Z87Wty1ZIj33nHTOOdJ222V8apXq1s1aMtx5p7RsWc0eGw/udt458Gkhi8SLqsT33dEGAQAAIFoI7ipQ1b67f/9b2rhRuvTSzM4pETfeaEVV/vnPmj2OHnf5oVkzabfdtuy7ow0CAABAtBDcVaBzZzsQLh/crVsnPfig1L9/dh4Qd+4snXmmdP/90sKFiT+ONgj5o6Dgl8HdtttKO+wQ7pwAAAAQDIK7CtSqZat35YO7Z56Rvv9euuyyUKaVkOuvt31UN9+c+GMI7vJHQYG0YIGl7sbbIDgX9qwAAAAQBIK7SvTsaSsbixfbz95b+4N995UOOyzUqVVpl12k88+3pubxtLuq0OMuv8SLqkyaRBsEAACAqCG4q0T5fXfvvCN9/rk1Lc/2lY5rr5Xq1pVuuKH6+9LjLr8ccID9/X70ka3YEtwBAABEB8FdJfbfX2rYcEtwd/fdUsuW0qmnhjqthLRqJf3hD9Kzz0rTp1d9X9og5JemTaU995ReftnSd6mUCQAAEB0Ed5WoW1c66CAL7mbOlIYPly66SKpfP+yZJebKK6UmTaS//rXq+xHc5Z+CAvublli5AwAAiBKCuyr06iV99pn0t79ZUPe734U9o8Q1ayZdcYX0+uvShAmV348ed/knvu9OIrgDAACIEoK7KvTsaYVUnn9eOuMMqUWLsGdUM5deKjVvbnvwKkOPu/zTvbtdNm1qfx8AAACIBoK7KhQWWnqmlN3tDyrTpIl09dVWDObddyu+D20Q8s9++1m7j913z/7iQAAAAEgcwV0VGjaUDj/cmpbvtVfYs0nOhRdKbdva6p33W99OcJd/GjaUDjnETl4AAAAgOuqEPYFsN2xY2DNITYMG0v/9n/W+GzbMAtW4eI+7U04Jb34Ixzvv2OodAAAAooPDu2rUrbslNTNXnX22peBde62Vv4+jx13+qltXql077FkAAAAgSAR3eaBuXenGG63n3QsvbLmeNggAAABAdBDc5YlTTpH23ttSNDdutOsI7gAAAIDoILjLE7VqSbfcIpWUSE89ZdfR4w4AAACIDoK7PNKvn3TggdaUfd06etwBAAAAUUJwl0ecs9W7hQulhx6iDQIAAAAQJbRCyDO9e0t9+liQV6+edOihYc8IAAAAQBBYuctDt9wiff+9tUJg5Q4AAACIBoK7PFRYKA0caN8T3AEAAADRQHCXp265RWrXzgqsAAAAAMh97LnLU127Sl9/HfYsAAAAAASFlTsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIiApIM759yezrmpZb5WOucuK3efw5xzK8rc5/9SnjEAAAAAYCt1kn2g9/4rSftJknOutqRFkoZWcNcPvPf9kn0eAAAAAED1gkrL7CNpjvd+QUDjAQAAAABqIKjg7lRJz1Vy20HOuWnOubedc10Dej4AAAAAQBkpB3fOuXqSBkh6qYKbJ0tq773fV9J9kl6rYpzznXOTnHOTli1bluq0AAAAACCvBLFyd7Skyd77peVv8N6v9N6vin0/XFJd59yOFQ3ivR/ivS/w3hc0b948gGkBAAAAQP4IIrg7TZWkZDrndnLOudj3PWLP90MAzwkAAAAAKCPpapmS5JxrJKlI0gVlrvudJHnvH5J0oqQLnXObJK2VdKr33qfynAAAAACAraUU3HnvV0vaodx1D5X5/n5J96fyHAAAAACA6gVVLRMAAAAAECKCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIiAlIM759x859x059xU59ykCm53zrl7nXMlzrnPnHMHpPqcAAAAAIBfqhPQOId777+v5LajJe0R+yqU9GDsEgAAAAAQkEykZQ6U9LQ3H0vazjnXKgPPCwAAAAB5I4jgzksa5Zz71Dl3fgW3t5H0TZmfF8auAwAAAAAEJIi0zEO894uccy0kjXbOzfTej63pILHAMB4crnfOzQhgbttKWsE4GRmLcTI3FuNkbqwdJVWWcl4T2fY7yrZxghyLcTI3FuNkbizGydxYjJO5sRinenvW+BHe+8C+JN0g6c/lrntY0mllfv5KUqtqxpkU0HyGME5uzSmq42TjnKI6TsBz4r0o9/7PGCfH5hTVcbJxTlEdJxvnFNVxsnFOUR0nNlaNj0NSSst0zjVyzjWJfy+pr6TyK25vSDozVjXzQEkrvPeLU3neGniTcTI2FuNkbizGyexYQci231G2jRPkWIyTubEYJ3NjMU7mxmKczI3FOGngYlFhcg92roOkobEf60h61nt/i3Pud5LkvX/IOeck3S/pKElrJJ3jvd+qZUK5cSd57wuSnhgABID3IgAAEJZkjkNS2nPnvZ8rad8Krn+ozPde0sU1HHpIKvMCgIDwXgQAAMJS4+OQTLRCqDHvPQdUMc65x51z35UtMOOc29c5Nz7WPP5N51zTMOeI9HDOtXPOjXHOfeGc+9w5d2mZ237vnJsZu/5fYc4zysJ8L3LOHeWc+8o5V+Kcuyp23WPOuWnOuc+ccy875xqHNT+kTyXv+82cc6Odc7Njl9uHOUekTyX//y8456bGvuY756aGOEWkSVWf+7HbL3fOeefcjmHNEZmVzHFISmmZSD/nXC9Jq2S9AveKXTdRVrjmfefcuZJ29d7/Ncx5InixfpCtvPeTY3tbP5V0nKSWkq6VdKz3fr1zroX3/rsQp4qAOedqS5olqUjWPmaipNMkLfTer4zd505J33nvbw1tokiLSt73/yVpuff+1liwv733/i9hzhPpUdH/f7nb75DVL7gx45NDWlX2ue+9/8I5107So5I6SermvQ+ikjMiKCtX7rCFt7YSy8td3VFSvN3EaEknZHRSyAjv/WLv/eTY9z9L+lLWI/JCSbd679fHbiOwi54ekkq893O99xskPS9pYJnAzknaRtZnFBFTyfv+QElPxb5/SnaiBxFUyf+/pP+99k+W9FxGJ4WMqOJzX5LuknSleN+PJOdcA+fchFh2zufOub/Frr8klsGT8IotwV1u+lz2QS9JJ0lqF+JckAHOuV0k7S/pE1lw39M594lz7n3nXPdQJ4d0aCPpmzI/L4xdJ+fcE5KWyM7e3pf5qSEkLctUml4iW8FH/ukpaan3fnbYE0F6lf3cd84NlLTIez8t3FkhjdZL6u2931fSfpKOinUZ+FDSEZIWJDoQwV1uOlfSRc65TyU1kbQh5PkgjWL7ql6RdFls5aaOpGaSDpR0haQXY2dzkQe89+dIai07o3tKyNNBCGKFyjh7n59OE6t2kVf2c1/SJknXSPq/MOeE9PJmVezHurEv772f4r2fX5OxCO5ykPd+pve+r/e+m+xNfk7Yc0J6OOfqyt7gn/Hevxq7eqGkV2NvBBMklUpic3W0LNIvV+Tbxq6TJHnvN8tSNUnJzh9LY/tx4vtySMfOM865OpIGSXoh7LkgfSr43N9N0q6Spjnn5ss+DyY753YKb5ZIB+dc7VixpO8kjfbef5LMOAR3Ocg51yJ2WUvSdZIeqvoRyEWx1bjHJH3pvb+zzE2vSTo8dp+OkupJYmN1tEyUtIdzblfnXD1Jp0p6wzm3u/S/v40BkmaGOEdk1huSzop9f5ak10OcC8JxhKSZ3vuFYU8E6VHR5773frr3voX3fhfv/S6yE7wHeO+XhDhVpIH3frP3fj9ZAN/DObdVQaVEENxlOefcc5LGS9rTObfQOfcbSac552bJDuy+lfREmHNE2hwsabCk3mVKYB8j6XFJHWJlsp+XdJan7G2keO83SbpE0khZ+uWLscunnHPTJU2X1EoS1fIiqJL3/VslFTnnZssO8qmSGlGV/P9LdpKHlMxoq+xzH3nEe/+TpDGSjkrm8bRCAAAAAICQOOeaS9rovf/JObeNpFGS/um9Hxa7fb6kgkRaYLByBwAAAADhaSVpjHPuM9nWjNHe+2HOuT845xbKUjU/c849Wt1ArNwBAAAAQASwcgcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARUCfsCQBAGJxzmyVNl1RX0iZJT0u6y3tfGurEAAAAkkRwByBfrfXe7ydJzrkWkp6V1FTS9WFOCgAAIFmkZQLIe9777ySdL+kSZ2o7525zzk10zn3mnLsgfl/n3F+cc9Odc9Occ7eGN2sAAIBfYuUOACR57+c652pLaiFpoKQV3vvuzrn6kj50zo2S1Cl2W6H3fo1zrlmIUwYAAPgFgjsA2FpfSfs4506M/bytpD0kHSHpCe/9Gkny3i8PaX4AAABbIbgDAEnOuQ6SNkv6TpKT9Hvv/chy9zkyjLkBAAAkgj13APKec665pIck3e+995JGSrrQOVc3dntH51wjSaMlneOcaxi7nrRMAACQNVi5A5CvtnHOTdWWVgj/kXRn7LZHJe0iabJzzklaJuk47/0I59x+kiY55zZIGi7pmgzPGwAAoELOTlIDAAAAAHIZaZkAAAAAEAEEdwAAAAAQAQR3AAAAABABBHcA8oZz7nHn3HfOuRllrtvXOTfeOTfdOfemc65p7Pp6zrknYtdPc84dVuYx3WLXlzjn7o0VXQEAAAgVwR2AfPKkpKPKXfeopKu893tLGirpitj150lS7PoiSXc45+LvmQ/Gbt8j9lV+TAAAgIwjuAOQN7z3YyUtL3d1R0ljY9+PlnRC7Psukt6NPe47ST9JKnDOtZLU1Hv/cawn3tOSjkvvzAEAAKpHcAcg330uaWDs+5MktYt9P03SAOdcHefcrpK6xW5rI2lhmccvjF0HAAAQKoI7APnuXEkXOec+ldRE0obY9Y/LArdJku6W9JGkzWFMEAAAIBF1wp4AAITJez9TUl9Jcs51lHRs7PpNkv4Yv59z7iNJsyT9KKltmSHaSlqUqfkCAABUhpU7AHnNOdcidllL0nWSHor93NA51yj2fZGkTd77L7z3iyWtdM4dGKuSeaak18OZPQAAwBas3AHIG8655yQdJmlH59xCSddLauycuzh2l1clPRH7voWkkc65UtnK3OAyQ10kq7y5jaS3Y18AAAChclbsDQAAAACQy0jLBAAAAIAIILgDAAAAgAgguAMAAACACCC4AwAAAIAIILgDAAAAgAgguAMA5AXn3Gbn3FTn3OfOuWnOuctj/Q2reswuzrlfZ2qOAACkguAOAJAv1nrv9/Ped5VUJOloWa/DquwiieAOAJAT6HMHAMgLzrlV3vvGZX7uIGmipB0ltZf0H0mNYjdf4r3/yDn3saTOkuZJekrSvZJulXSYpPqSHvDeP5yxfwQAAFUguAMA5IXywV3sup8k7SnpZ0ml3vt1zrk9JD3nvS9wzh0m6c/e+36x+58vqYX3/mbnXH1JH0o6yXs/L4P/FAAAKlQn7AkAAJAF6kq63zm3n6TNkjpWcr++kvZxzp0Y+3lbSXvIVvYAAAgVwR0AIC/F0jI3S/pOtvduqaR9ZfvR11X2MEm/996PzMgkAQCoAQqqAADyjnOuuaSHJN3vbX/CtpIWe+9LJQ2WVDt2158lNSnz0JGSLnTO1Y2N09E510gAAGQBVu4AAPliG+fcVFkK5iZZAZU7Y7f9W9IrzrkzJY2QtDp2/WeSNjvnpkl6UtI9sgqak51zTtIyScdlZvoAAFSNgioAAAAAEAGkZQIAAABABBDcAQAAAEAEENwBAAAAQAQQ3AEAAABABBDcAQAAAEAEENwBAAAAQAQQ3AEAAABABBDcAQAAAEAE/D+RYZrGGQDmvQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(15,8))\n",
"training_set['Y_t'][3600:].plot(c='blue')\n",
"testing_set['Y_t'].plot(c='blue',alpha=0.5, style=['--'])\n",
"testing_set['pr1'].plot(c='red')\n",
"#testing_set['pr2'].plot(c='magenta')\n",
"plt.ylim((5,25))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "plastic-upset",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(5.0, 25.0)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAIHCAYAAAA8ZqVjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1eUlEQVR4nO3dd5yU1fXH8e+lS1NRQJooKlLsLKxGQQUXG0WxR7ElaiyJJkZjy09jSUzsLSp2E3vBgkhxRRFFASmCirA0BQFRFKSXvb8/zkxYly2zM8/MM/PM5/167Wt2p9y5LDszz3nuuec4770AAAAAALmtVtgTAAAAAACkjuAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIqDa4M451845N8Y594Vz7nPn3KWx629wzi1yzk2NfR1TyeOPcs595Zwrcc5dFfQ/AAAAAAAguer63DnnWklq5b2f7JxrIulTScdJOlnSKu/97VU8trakWZKKJC2UNFHSad77L4KZPgAAAABASmDlznu/2Hs/Ofb9z5K+lNQmwfF7SCrx3s/13m+Q9LykgclOFgAAAABQsRrtuXPO7SJpf0mfxK66xDn3mXPucefc9hU8pI2kb8r8vFCJB4YAAAAAgATVSfSOzrnGkl6RdJn3fqVz7kFJN0nyscs7JJ2b7EScc+dLOl+SGjVq1K1Tp07JDgUAAAAAOe3TTz/93nvfvCaPSSi4c87VlQV2z3jvX5Uk7/3SMrc/ImlYBQ9dJKldmZ/bxq7bivd+iKQhklRQUOAnTZqUyNQAAAAAIHKccwtq+phEqmU6SY9J+tJ7f2eZ61uVudvxkmZU8PCJkvZwzu3qnKsn6VRJb9R0kgAAAACAqiWycnewpMGSpjvnpsauu0bSac65/WRpmfMlXSBJzrnWkh713h/jvd/knLtE0khJtSU97r3/PNB/AQAAAACg+uDOez9OkqvgpuGV3P9bSceU+Xl4ZfcFAAAAAASjRtUyAQAAAADZieAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAigOAOAAAAACKA4A4AAAAAIoDgDgAAAAAioNrgzjnXzjk3xjn3hXPuc+fcpbHrb3POzXTOfeacG+qc266Sx893zk13zk11zk0KeP4AAAAAACW2crdJ0uXe+y6SDpR0sXOui6TRkvby3u8jaZakq6sY43Dv/X7e+4KUZwwAAAAA2Eq1wZ33frH3fnLs+58lfSmpjfd+lPd+U+xuH0tqm75pAgAAAACqUqM9d865XSTtL+mTcjedK+ntSh7mJY1yzn3qnDu/irHPd85Ncs5NWrZsWU2mBQAAAAB5L+HgzjnXWNIrki7z3q8sc/21stTNZyp56CHe+wMkHS1L6exV0Z2890O89wXe+4LmzZsn/A8AAAAAACQY3Dnn6soCu2e896+Wuf5sSf0kne699xU91nu/KHb5naShknqkOGcAAAAAQDmJVMt0kh6T9KX3/s4y1x8l6UpJA7z3ayp5bCPnXJP495L6SpoRxMQBAAAAAFsksnJ3sKTBknrH2hlMdc4dI+l+SU0kjY5d95AkOedaO+eGxx7bUtI459w0SRMkveW9HxH8PwMAAAAA8lud6u7gvR8nyVVw0/AKrpP3/ltJx8S+nytp31QmCAAAAACoXo2qZQIAAAAAshPBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQAAAABEAMEdAAAAAEQAwR0AAAAARADBHQCgxhYvlvr3l269Vfr667BnAwAAJII7AEASXnpJGjZMuvpqqX176bDDpEcekX78MeyZAQCQvwjuAAA1VlwsdeggzZkj3XSTtGSJdP750k47SSecIA0dKq1fH/YsAQDILwR3AIAa2bRJeu89qU8fC/Cuu0768ktp0iTpooukDz+UBg2yQO/886WxY6XS0rBnDQBA9BHcAQBq5NNPpZUrLbiLc07q1k266y5p4UJpxAipXz/p2WelQw+Vdt1VuuYa6fPPw5s3AABRR3AHAKiR4mK77N274tvr1JGOPFL6z3+kpUulZ56RunaV/vUvaa+9pP33l+64Q/r228zNGQCAfEBwBwCokeJiaZ99pObNq79vo0bSr38tDR8uLVok3XOPVK+e9Oc/S23bSkVF0pNPsj8PAIAgENwBABK2dq3tqSubkpmoli2lP/xB+uQT6auvpL/+VZo7VzrnHOmYY6RVq4KfLwAA+aTa4M451845N8Y594Vz7nPn3KWx65s550Y752bHLrev5PFnxe4z2zl3VtD/AABA5nz0ka2yJRPcldWxo/S3v0klJdLjj1uBliOPlFasCGSaAADkpURW7jZJutx730XSgZIuds51kXSVpGLv/R6SimM//4Jzrpmk6yUVSuoh6frKgkAAQPYrLpZq15Z69QpmPOds5e6FF6QJEyxo/OGHYMYGACDfVBvcee8Xe+8nx77/WdKXktpIGijpqdjdnpJ0XAUPP1LSaO/9cu/9j5JGSzoqgHkDAEJQXCz16CE1aRLsuCeeKL32mjRjhjVEX7Ik2PEBAMgHNdpz55zbRdL+kj6R1NJ7vzh20xJJLSt4SBtJ35T5eWHsOgBAjvnpJ+tll2pKZmWOPdYKr8ybZyuD33xT/WMAAMAWCQd3zrnGkl6RdJn3fmXZ27z3XpJPZSLOufOdc5Occ5OWLVuWylAAgDR4/31rRp6u4E6y9gqjRlkLhZ49pTlz0vdcAABETULBnXOuriywe8Z7/2rs6qXOuVax21tJ+q6Chy6S1K7Mz21j123Fez/Ee1/gvS9onkh9bQBARhUXS9tsIx10UHqf51e/ksaMseqZPXtKX3yR3ucDACAqEqmW6SQ9JulL7/2dZW56Q1K8+uVZkl6v4OEjJfV1zm0fK6TSN3YdACDHFBdLhxwi1a+f/uc64ACroFlaKh16qDR1avqfEwCAXJfIyt3BkgZL6u2cmxr7OkbSrZKKnHOzJR0R+1nOuQLn3KOS5L1fLukmSRNjXzfGrgMA5JAlS2wFLZ0pmeXttZf0wQe2Wnj44dYfDwAAVK5OdXfw3o+T5Cq5eauPee/9JEm/LfPz45IeT3aCAIDwvfuuXWYyuJOkPfawAK9PH+mII6Rhw2wlDwAAbK1G1TIBAPmpuFjabjtp//0z/9zt20tjx0rt2klHHSWNGJH5OQAAkAsI7gAAVfLegrvDD7cG5mFo3dqqdXbqJA0YIA0dGs48AADIZgR3AIAqzZ0rLViQ+ZTM8po3t/TQAw6QTjpJevbZcOcDAEC2IbgDAFSpuNguww7uJGn77aXRo61q5xlnSI89FvaMAADIHgR3AIAqFRdbWuSee4Y9E9OkiTR8uHTkkdJvfyvde2/YMwIAIDsQ3AEAKlVaaqmQffpIrrK6ySFo2FB67TXp+OOlSy+V/vGPsGcEAED4CO4AAJWaPl36/vvsSMksr3596cUXpdNPl665RrruOiv+AgBAvqq2zx0AIH9l0367itSpIz31lDU6v+UWqVkz6U9/CntWAACEg5U7AECliouljh2ltm3DnknlateWhgyRevSQXnop7NkAABAegjsAQIU2brTm4dm6aleWc1KvXtKUKdKGDWHPBgCAcBDcAQAqNGGCtGqV1Lt32DNJTGGhtH69NG1a2DMBACAcBHcAgAoVF9uK2OGHhz2TxPToYZeffBLuPAAACAvBHQCgQsXF0n77STvsEPZMEtOunbTTTgR3AID8RXAHANjK6tXS+PG5sd8uzjlLzSS4AwDkK4I7AMBWPvzQCqrkUnAnWXA3e7a0fHnYMwEAIPMI7gAAWykulurWlXr2DHsmNVNYaJcTJoQ7DwAAwkBwBwDYSnGxdOCBUqNGYc+kZgoKLD2T1EwAQD4iuAMA/MLy5dLkybmXkilJTZtKXboQ3AEA8hPBHQDgF957T/I+N4M7yVIzJ0ywfwMAAPmE4A4A8AvFxZaOGe8bl2sKC6UffpDmzg17JgAAZBbBHQDgF4qLpV69pHr1wp5JcuJFVUjNBADkG4I7AMD/LFokffVV7qZkSlLXrlLDhgR3AID8Q3AHAPif4mK7zOXgrk4dq5pJcAcAyDcEdwCA/ykulnbcUdpnn7BnkprCQmnKFGn9+rBnAgBA5hDcAQAkWXXJ4mLp8MOlWjn+6dCjh7RhgzRtWtgzAQAgc3L84xsAEJRZs2zPXS6nZMZRVAUAkI8I7gAAkqKx3y6ubVupVSuCOwBAfiG4AwBIsuBu552l3XYLeyapc85W7wjuAAD5hOAOAKDNm6UxY6TevS0wioLCQqmkxBqaAwCQDwjuAACaOlX68cdopGTGxffdTZgQ7jwAAMgUgjsAgN591y579w53HkEqKLBVSFIzAQD5guAOAKDiYqlzZ6l167BnEpwmTaSuXVm5AwDkD4I7AMhzGzZIH3wQrZTMuMJCC+68D3smAACkH8EdAOS5jz+W1qyJbnD3ww/SnDlhzwQAgPQjuAOAPFdcLNWqJR12WNgzCR7NzAEA+YTgDgDyXHGx1K2btN12Yc8keF27So0aEdwBAPIDwR0A5LFVqyzwiWJKpiTVrm1VMwnuAAD5gOAOAPLY2LHSpk3RDe4kqUcP6+O3fn3YMwEAIL0I7gAgjxUXS/XrSwcfHPZM0qew0CqCTp0a9kwAAEgvgjsAyGPFxdKvfiVts03YM0kfiqoAAPIFwR0A5Klly6Rp06KdkilJbdtac3aCOwBA1BHcAUCeGjPGLqMe3Em2ekdwBwCIOoI7AMhTxcVS06ZWTTLqCgutkfn334c9EwAA0ofgDgDyVHGxdOihUp06Yc8k/eL77iZMCHceAACkE8EdAOShBQtsJSsfUjIlW52sVYvUTABAtFV7vtY597ikfpK+897vFbvuBUl7xu6ynaSfvPf7VfDY+ZJ+lrRZ0ibvfR4k/wBA9isutst8Ce4aN5a6dmXlDgAQbYkk4zwp6X5JT8ev8N6fEv/eOXeHpBVVPP5w7z27HAAgi7z7rtSihQU8+aKwUHr1Vcl7ybmwZwMAQPCqTcv03o+VtLyi25xzTtLJkp4LeF4AgDTx3lbuevfOryCnsFBavlwqKQl7JgAApEeqe+56SlrqvZ9dye1e0ijn3KfOufNTfC4AQAC+/FJasiR/UjLjaGYOAIi6VIO701T1qt0h3vsDJB0t6WLnXK/K7uicO985N8k5N2nZsmUpTgsAUJl8228X16WL1KgRwR0AILqSDu6cc3UkDZL0QmX38d4vil1+J2mopB5V3HeI977Ae1/QvHnzZKcFAKhGcbG06672lU9q17aqmQR3AICoSmXl7ghJM733Cyu60TnXyDnXJP69pL6SZqTwfACAFG3aJL33Xv6t2sUVFkpTp0rr1oU9EwAAgldtcOece07SeEl7OucWOud+E7vpVJVLyXTOtXbODY/92FLSOOfcNEkTJL3lvR8R3NQBADU1ebK0YkV+B3cbN1qABwBA1FTbCsF7f1ol159dwXXfSjom9v1cSfumOD8AQID+/W9r5t27d9gzCUfZoioHHhjuXAAACFqqBVUAADniySelp56Srr7aetzlozZt7It9dwCAKCK4A4A8MH26dNFF0uGHS3/7W9izCVdhIcEd8s/vfieddFLYswCQbgR3ABBxK1dKJ54obbut9OyzVjUynxUWSnPnSnTdQb7YvFl64QXplVesxyWA6CK4A4AI81467zyppER6/nlpp53CnlH44vvuJkwIdx5ApkybJv30k70fvPpq2LMBkE4EdwAQYf/+t/Tii9Itt0iHHhr2bLJDt25WVIbgDvlizBi7bNPG3g8ARBfBHQBE1MSJ0h//KB1zjHTllWHPJns0bizttRf77pA/xoyR9txT+u1vpbFjpcWLw54RgHQhuAOACFq+3IontGolPf20rVRhi8JCW7nzPuyZAOm1aZMFdIcdZu8JpGYC0cbHPQBETGmpdNZZ0rffSi+9JO2wQ9gzyj6FhdKPP0qzZ4c9EyC9Jk+Wfv7ZKuV27Sp16UJqJhBlBHcAEDG33y4NGybdcYfUo0fYs8lO8d8LqZmIuvh+u8MOs8uTT5Y++MBO/gCIHoI7AIiQsWOla66x9KtLLgl7NtmrSxfbe0dwh6gbM8b+3lu2tJ/jqZmvvBLuvACkB8EdAETE0qXSqadKHTpIjz4qORf2jLJX7dpSQQHBHaJt40Zp3DhLyYzr0sUKCr30UnjzApA+BHcAEAGbN0u//rXtI3v5Zalp07BnlP0KC63/17p1Yc8ESI+JE6XVq38Z3Em2ejdunLRoUTjzApA+BHcAEAE33ii9+670wAPSPvuEPZvcUFhoKxtTpoQ9EyA94vvtyve4JDUTiC6COwDIcaNGSTfdJJ19tnTuuWHPJncUFtolqZmIqvfes5M9O+74y+s7d5b23pvUTCCKCO4AIIctXCidfrqVOH/ggbBnk1tat5batiW4QzStXy99+OHWKZlxpGYC0URwBwA5auNG6ZRTbM/Yyy9LDRuGPaPcU1hIcIdomjBBWru26uBOsvcOANFBcAcAOeqqq6SPPrLKmHvuGfZsclNhoTRvnrRsWdgzAYI1ZoxVzO3Vq+LbO3WylE1SM4FoIbgDgBw0dKh0553SxRfb6h2SE993N2FCuPMAgjZmjLTfftL221d+n5NOstTNhQszNi0AaUZwBwA5Zu5c6ZxzrE/bHXeEPZvc1q2b9bwjNRNRsm6dNH585SmZcaRmAtFDcAcAOWTdOunEEy3d6sUXpfr1w55RbmvUyBo6E9whSsaPt4Iq1QV3e+4p7buvvZcAiAaCOwDIIZddZn3Znn5a2nXXsGcTDYWFlpZZWhr2TIBgjBkj1aol9exZ/X1PPtmCwW++Sf+8AKQfwR0A5IhnnpEefli68kqpf/+wZxMdPXpIP/0kzZ4d9kyAYIwZYynH225b/X1JzQSiheAOAHLAl19KF1wgHXKIdPPNYc8mWmhmjihZs8b+lqtLyYzbYw8rvEJqJhANBHcAkAOuvlpq0EB6/nmpbt2wZxMtnTtLjRsT3CEaPvzQemAmGtxJlpr58cfS11+nb14AMoPgDgCy3IYNUnGxHYC1aRP2bKKndm2pe3eCO0TDmDFSnTq2yp8oUjOB6CC4A4As99FH0qpV0pFHhj2T6CoslKZNk9auDXsmQGree89OVjRunPhjdt9d2n9/UjOBKCC4A4AsN2KEnYmvSZoVaqawUNq0ySqRArlq1Spp4sTk3itOPtlWrxcsCH5eADKH4A4AstzIkdLBB0tNm4Y9k+iiqAqiYNw4O0mRTHBHaiYQDQR3AJDFliyRpk4lJTPdWrWS2rUjuENuGzPGCi796lc1f+xuu0kHHEBqJpDrCO4AIIuNGmWXRx0V7jzyQWEhwR1y25gx9nfcsGFyjz/5ZGnCBGn+/ECnBSCDCO4AIIuNHCm1aCHtu2/YM4m+wkI7qP3uu7BnAtTcihXSp5+mtjeX1Ewg9xHcAUCWKi21lbu+faVavFunXXzf3YQJ4c4DSMYHH9h7RirBXYcOUrdupGYCuYzDBQDIUpMnS99/T0pmpnTrZj3vSM1ELhozRqpfXzrooNTGOflkq7g5b14w8wKQWQR3AJClRoywy6KicOeRLxo2lPbem+AOuWnMGAvsGjRIbRxSM4HkbdwozZoV7hwI7gAgS40caatJLVqEPZP80aOHpWWWloY9EyBxy5dbVd0gemHuuqtUUEBqJpCMESOkZ5+VvvkmvDkQ3AFAFlqxQho/nhYImVZYaL/7sM+8AjUxdqzkfTDBnWSpmZMmSXPnBjMekA+8l774wr7/6qvw5kFwBwBZqLhY2ryZ4C7TaGaOXDRmjLTNNrbyHARSM4GaW7BAWrvWeqZ27hzePAjuACALjRwpNWmSenEE1EynTvZ7J7hDLnnvPengg62gShB22UXq3p3UTKAmttlG2n9/6cwzpTZtwpsHwR0AZBnvLW+/Tx+pbt2wZ5Nfate21Y/Ro6VNm8KeDVC977+XPvssuJTMuJNPtr55pGYCiWnZUho40D63FywIr+IswR0AZJmvvpK+/poWCGG56CKppER64IGwZwJU7/337fKww4IdN56a+dJLwY4LRNHChdLSpVt+fvttS5cOA8EdAGSZkSPtkv124Tj+eGsc/3//Jy1ZEvZsgKqNGSM1amRplEFq3972oKYrNfO556RevX55QAzkqpEjbY+q9/Zzp05WMXP16szPheAOALLMiBFSx4627wWZ55x03322Mf4vfwl7NkDVxoyRDjkkPSncJ50kTZ5sK9lBKS21Eye//rX0wQfSf/4T3NhAGL7/3gK5/fazzw9J2nNPC/TCqLxMcAcAWWTtWkuzIiUzXB07SpdfLj39tPThh2HPBqjY0qVWej3o/XZxJ55ol0GlZq5ZI51yinTTTdK551o/PYI75LqpU6VataR9991y3U47SdtuK82cmfn5ENwBQBb54AML8EjJDN9110lt20oXX0xxFWSn996zy3QFd+3bSwceGExwt2iRpWG+8op0xx3So49KZ51lxWCmTUt9fCAMpaX297vHHlLjxluud85SM7/91u6TSQR3AJBFRo60cuaHHhr2TNCokXTnnfbB/dBDYc8G2NqYMda644AD0vccJ50kTZkizZ6d/BiTJtmewK++kt54Q/rTn+zg99RTpTp1WL1D7lq2TFq3zlIyyzv8cOmyy2xVL5MI7gAgi4wYIfXsaYEFwnfiidaS4rrrpO++C3s2wC+NGWOrYXXqpO85Uk3NfPFFe0+rV0/66COpX78tt+24o3T00dKzz0qbN6c+VyDTWraU/vxnS+Uvr0EDa6+TadUGd865x51z3znnZpS57gbn3CLn3NTY1zGVPPYo59xXzrkS59xVQU4cAKLmm29s/wwpmdkjXlxl9WrpKj7FkEW+/daKNaQrJTNu552lgw6qeXDnvXTjjbbH7oADpAkTpL333vp+Z54pLV4sFRcHM18gU+LplvXrVx7EzZhhKciZTM1MZOXuSUkVbe2/y3u/X+xrePkbnXO1JT0g6WhJXSSd5pzrkspkASDKRo2yS4qpZJfOnS2N7IknpPHjw54NYOI9tNId3EmWmjl1auKV/9autWqY119vwdu770otWlR83379rPAEqZnINRMmWMr+unWV38c564H3zTeZm1e1wZ33fqyk5UmM3UNSifd+rvd+g6TnJQ1MYhxkue+/p9gAEIQRI6Q2baSuXcOeCcr761/t/+aSS0gfQ3YYM0babrtfVuhLl5qkZi5ebHuGX3hBuvVW6cknbWWjMg0aSCefLL36qrRqVSDTBdLOe9uLWquW/Q1XZvfdbVUvk1UzU9lzd4lz7rNY2ub2FdzeRlLZOHVh7DpEyKZNlmf8z3+GPRMgt23aJL3zjqVkxvvkIHs0bmwV/iZPloYMCXs2gFXKPPTQzOzpaddO+tWvqg/upkyRevSQPv/cgrW//CWx97PBg61NwtChwcwXSLclS6wVyf77V32/+vWlDh0suIs3OE+3ZIO7ByXtJmk/SYsl3ZHqRJxz5zvnJjnnJi1btizV4ZAhCxdKP/4YXA8cIF9NmCD99BP77bLZySdLvXtL115rGQtAWL75RpozRzrssMw958knW+XYr76q+PahQ62ZumS9IY87LvGxDz5Y2mUXUjORO6ZMsUJGe+1V/X07dbJj5UwV5UoquPPeL/Xeb/bel0p6RJaCWd4iSe3K/Nw2dl1lYw7x3hd47wuaN2+ezLQQgvnz7XLaNOnrr0OdCpDTRo609I4jjgh7JqhMvLjKzz9LV18d9myQzzK53y7uhBPssvzJXO+lf/xDGjTICqZMnFhxWfiq1KolnXGGZS8sqvRIEcgOmzZJ06db0LbNNtXfv2NHCwIzlZWTVHDnnGtV5sfjJc2o4G4TJe3hnNvVOVdP0qmS3kjm+ZC94sGdJL31VmjTAHLeyJGWztSsWdgzQVW6dJEuvVR67DFbbQXCMGaMtMMOFVefTJe2bW2FrWxwt26dFUy55hrptNNsXjvtlNz4gwdboPjss8HMF0ino46yKrKJaNLE9q1WVlQoaIm0QnhO0nhJezrnFjrnfiPpX8656c65zyQdLumPsfu2ds4NlyTv/SZJl0gaKelLSS967z9P078DIZk/385EtG8vvflm2LMBctMPP1igQEpmbrj+ejuAvfhiiqsgHGPG2H67TDdHPvlk6bPPbP/Q0qWWpvzf/0o33SQ980xiqxiV6dhRKiwkNRPZr04dK2TUpoaVRH74wSrJplsi1TJP89638t7X9d639d4/5r0f7L3f23u/j/d+gPd+cey+33rvjynz2OHe+47e+92897ek8x+CcMyfb3/cxx1npY5Xrw57RkDueecdO2NNC4Tc0KSJdPvt0qRJtoIHZNK8edKCBZlNyYyLp2becotlGkydait5110XTMrZ4MGW7jZtWupjAemwcqW1xKlpkPbDD5bWP6OiXMeA1Un/UyDK5s+3TdD9+0v33GMHqQNpeJE3Ro2SHnkkmLFat5buvDMzld+yzYgR0vbbS927hz0TJOq006xq5tVX2wHvDjuEPSPkizD228W1aWNFU/77X3vPHjtWKigIbvxTTpEuu8xW7zLR4gGoqWnTpOJiac89a7ZS3ayZfU7MnJn+z3qCO6Rk/nypZ0/7atpUGjaM4C6f3Huvrdjuumtq46xfL738stSnjzRgQDBzyxXeW5BcVJSfgW2uck66/34rHHHttdbIFsiEMWNs706XLuE8/zXX2Em9++6reVpadXbcUTrmGNt3989/8p6I7BLvbde+fc33xztnAeEnn9he1ap646WK4A5J27TJWiHssotUr57tFxo2TCotzfw+AISjpMQ+iF9+ObVxNm60APGBB/IvuJsxQ/r2W/bb5aK99pJ+/3vLWvjtb4NdwQAq4r0Fd4cdFl4/zKOPtq90GTxYeuMNWx3p2zd9z4OaKy21PZe77Wbp6fnmm2+k5culXr2Se3ynTtJHH9mxUyItFPTxx0k9D4fgSNrChVZMYJdd7Od+/ayp4+TJoU4LGbJ5szR3rrT77qmPVbeudMEFtoI1a1bq4+WSESPskoOY3HTDDbaKcsklduADpFNJibUKCCMlM1P69ZO2247CKtloxgzptdekBx+svN9hlE2ZYosZya6at20rNWqU4O9u3LjEy3GWQ3CHpMXbIMSDu2OOsTOJVM3MD19/bStuQQR3knTeeRbkPfhgMOPlipEj7Qxe27ZhzwTJ2HZb6bbbLNXmiSfCng2iLsz9dpnSoIFV5Xz1VWnVqrBng7jSUttjueOO9r733HOZa8qdDby3Iip77WUBXjJq1bL92sccU80dvZeuuirpviIEd0ha+eBuxx3tJMOwYWHNCJlUUmKXe+wRzHg77WSFKZ54In+qrq5eLX3wASmZue6MM6zIxFVXWcoOkC5jxkitWlnbgCgbPFhas8YCPGSH9evtc7p3b+k3v7HiN/G+bZko7x8256RTT7WV5VS0bZtAIZZhw6QPP7S+O0kguEPS4j3u2rXbcl3//paWuWhRaNNChsSDu6BW7iTrG7ZiRf40sX3vPWnDBlog5Lp4cZXly6W//jXs2SCqvLf3jDD322XKwQfbPmxSM7PHNttYI+4uXazPW+fOdv2iRdJdd1n2gvfhzjGd4gFsEDUlJk6031eFNm+2Msx77GFRdBII7pC0eI+7ssvT/fvb5VtvhTIlZNDs2fZm36pVcGMefLC0zz5WWCXKHxJxI0bY7/CQQ8KeCVK17752cuKhh2xfBhC0r76yfe1RTsmMc85WxIuLOVmcDb75pvIUzO22s0D87bftxGwUU2l/+MHS7z//PJjx5syxhbkKj3P++197optvtr0qSSC4Q9LiPe7K6tLFrmPfXfSVlFjFrCArozpnB8jTpllFqagbOdLOwqezJDIy58YbLT394osproLg5cN+u7IGD7aD33zJ5MhW3luW4EsvVRyMNGpk6YrHHivNm2f75mfPzvw802nqVPu377xzMON16mTN0BcvLnfDunXS//2f1K2bLZMmieAOSasouHPOVu/eecfy5RFdJSXB7bcr6/TTbbP2/fcHP3Y2mTvXPgBJyYyO7baz3lzjx0tPPx32bBA1Y8bYfp3ddgt7Jpmxxx7SgQeSmhm2r76Sli61fsaVpQM7Z425zz9fatzY2vtERWmpnXDefffg2j907Gi/s5kzy93w0ENWre7WW1M6c05wh6SU7XFXXr9+dvLh3XczPi1kyObNllYQ5H67uEaNpLPPll55xVKQomrkSLukmEq0nHmmFZa68krpp5/Cng2iIr7f7vDDo7/frqzBg6Xp0+3gGpnnvfT++9awO5G+bC1aWOXrnj3t5/nzc7+i5ty5tsq2//7BjdmwoTVC/0Vwt3KldMst0hFH2FcKCO6QlPI97so69FA7c0PVzOhauNAKgaQjuJOkiy6yNguPPJKe8bPByJH2+ol61bt8U6uW7Rn94QfLrgGC8Pnn0rJl+ZOSGXfKKbbtiNW7cMyebamDvXolvpBUp47d13vbhzdkiBUQydV99FOm2N74oD+rO3e2IG/jxtgVt98uff+99I9/pDw2wR2SUr4NQln161tD5mHDcvfFjKoF3QahvI4d7W/o4YdtlThqNmywQgFHHplfZ+Hzxf77S7/7nQV5rDggCPm23y5uhx2sJ9gzz0TzsyDbrVghtWwp7b13zR/rnK287rKLFdl7/vnc3K5z5JG2/a1OnWDHLSy0LKW6dWV5r3feKZ10klRQkPLYBHdISlXBnWT77hYtsk2oiJ50tEEo7+KL7W/o9dfT9xxhGT/eKoqRkhldN99sqUyXXMJJLqRuzBj7vK3sMzfKBg+2FP3i4rBnkn+6d5cuuECqXTu5xzdubPvojzrKjhv+/W/LPswlTZumd5/rhg2SbrrJ9jPdfHMgYxLcISkV9bgr65hj7HaqZkbT7NlW4bFNm/Q9x7HHWk76Aw+k7znCMnKknQXs3TvsmSBdtt9euvZaady46FWOQ2aVltq+p3xbtYvr18+KFZGamTneW/sD71OviO2cFcY57zxrdRRUUZJMePttqy+QLpMnS49cNUf+4Yel3/42sNxPgjskpaIed2W1aGFLzuy7i6Z0tEEor3ZtS20bM0b64ov0PU8YRoywohvbbhv2TJBO/frZ5ejR4c4jHT74wMqeI/0++0xavjx/g7v69aWTT5aGDo1mD7VsNHeu9NhjwX727rSTbbdwTvrxR+nJJytoBZBFli61RuPff5++59hpJ6nnO/8nX6duoJu0Ce6QlIraIJTXr59tos3mFy+SU1KS3pTMuN/8xk4g/Pvf6X+uTFm61DZo0wIh+nbbzd4noxbcrV8vHX20pZwi/eL77Q47LNRphOrMM22/1quvhj2T6ItXyGzaVNpzz/Q8x4oVVkXz4YdtP+XXX6fneVIxZYqdZE5mv2GiWi2dqn2mP6uZR14mtW4d2LgEd0hKIsFd//52OXx4umeDTCotTV8bhPKaN7dqaU8/Lf38c/qfLxNGjbJL9ttFn3NSUZEdnEepGMTYsdLq1dbPdMWKsGcTbd7bXrPddqt8G0Q++NWvpA4dSM3MhPnzLdg65JDgi4jE7bKL9Ic/SH36WE+8xx+3/9ts2Z+8ebOtmO+5p1W0TBd3zdXa0Hh7Dd/ryi1VMwNAcIcaq6rHXVl7720fRuy7i5ZFi2zfb7oqZZZ38cUW2EXlQ33kSAtag+yZg+zVt68VEJgwIeyZBCd+wm7DBquCh+DNm2e1FTp3tt/xMceEPaNwOSedcYYFuosWhT2b6i1cKH36adizSM7779u+uAMOSO/zNGhg/fAuu8wyAdq121I9et68cAO9WbNspTitn9PvvSeNGKGVl1yjVXW209y5wQ1NcIcaq6rHXVnO2erd6NEWDCAaMlEps6wePaRu3aT778+es3rJKi21lbu+fdO7XxHZo3dvey+Mr9hGwfDh9jfcqhVpckH64QfpwQelgw+2Vaq//tXK0A8ZIv3zn2HPLnxnnGGfAc8+G/ZMKvfZZ3a88+WX9jrJtRX7Vatsj9nBB6dv1a68unWtRkM87XjhQumpp2w7xrRpdrwZhl13TWOVTO+lv/xFattW2197sY480t5Pg8LhBWqsujYIZfXrZ2c/4nsGkPvilf8yFdw5Z6t3X35pJ7py2ZQp1oiYlMz80ayZtS2Kyr67khI7q33ssdLxx1s1uVzsXZUt1q6VXnxRGjjQiitcdJH000/Wx3j+fFtFOe88a6Kc7/bYw6ouPv109p3oKy2118Krr0off2wF5zZvtj3WuaRxY+nSSwNptVa90tIK/yNbt7a+crVqWRGd++6z+g2ZDJQ7d5bOOiuNJ2Ffe83SOW64QbUbb6ODDrI9jkEhuEON1SS4O/xwy1emamZ0lJRY9bJM7v849VQ7SM71tggjR9pl377hzgOZVVRkVdeisD/t7bft8phjpBNOsMAu/neNxGzeLL37rnTuubYyd8op0qRJlp42ZYo0Y4Z01VXWCga/NHiw/X6mTQt7JlusW2eriZ98YlWQe/Xa0iZo4cJw51YTq1bZ32bduhlYtVuxwg4iO3aU/va3LSlBsoBqr72sWvavf20B57vvWiwopT+wX7ZMge5/28qmTdI110idOlkEKXu+6dPtuYNAcIcaq67HXVkNGtiBzZtvZt+ZNiSnpMRShjKZVrjNNnYg9NprufVhWd6IEZbD37Jl2DNBJhUV2UFTrq88S5ZqtscetnLfq5eddCE1s3reW0ByxRUWtPXpI738sq1QvPOOFbC47TZpv/227DvC1k45xYKPbNmD/eOP1jJg7lzbhnLkkfbZ2LSp7VvLhf2Bca+/boVNMnKsduON9mHeqpUFd/Fl2fvuszKastdBx45WNft3v7PK2aWlNsf33ktPxoD30gsv2FfaPPWUNHOm9Pe//y+K3rzZjm+mTg3mKQjuUGPV9bgrr39/a4Y5fXpap4UMyVQbhPIuvNDe2IcMyfxzB2HlSmn8eFIy89FBB1kGQ66nZq5ZYwdV8eIedepYOuGbb1pxFWztm29sv9w++1jgdvfdVqjihRcsZe/xxy3Qq1077Jnmhh12sJTgZ5/Njv1sdepYMHfmmbY3PM45O07KlbTMRYtsy0Xnzhk4uTBzpnTvvRa1jR275czGunVWQrN1a3uTefZZafVqObelJ+z69VKjRvY+dPfdtpc5yEraCxfansOuXYMb8xfWrpWuv94C2eOO+9/VDRrYQubMmcEE1wR3qLFE2iCUFT8QoGpm7istDS+469DB/paGDMnNA8l337WDEfrb5Z/69aVDD8394O699+z4q2zlxhNOsAyrd98NbVpZZfVqq+h4ww22srnzzpZi2bSpFYhYvFh64w1rys0+uuQMHiwtWWK/57DMnm2fh02a2KpSRcdEAwZIF1yQ8akl5f337e+xe/c0P5H30h//aBHaLbfYdW3bSn/+sy1bTZ9uy9uffy6dfrqluQwebGkvmzZpm21sm8aFF1qbgvHjpXvu2ZLyvnixPXThQgv6ahooTZliK8NdugT6r97i/vstkr711q2i6E6drKhSEE3TCe5QYzUN7lq1sjcM9t3lvsWL7cRTptoglHfxxXYmNBfTwEaMsL0DBx0U9kwQhqIiK0SSjc16EzV8uK1A9uq15bojjrAD3Fx8TQZh+XIL1v78Z6v4t9129ju56Sbbw3TjjXZC7MMP7YB0xx3DnnHuO/ZYafvtw0nNjFc8fuYZafJku66yla6GDXOjKvLixfbedNBBdiIqrd56yz4Mr79eatFi69v32suqCc2bZxHn6afbwePRR9tS6KWXShMmqGULrxNOkH7/e1sRj/eimz5deukl6dFHpTvusHYi9967ZZV3zhwL4ObOtUCq7Orvhg0WGHbtmqbfQ7xS0tFH29m+cuIN42fOTP2pMlToFFGRaI+78vr1szOZ331X8esZuSHTbRDKO/JIK038wAN29i5XeG9FJ/r0STydGdFSVGSXo0dbNlKu8d6Oy/r0sRSiuPr17f39tdesjH/U0wu/+Ub64IMtX59/btfXq2dtW664wnp3/epXW1LJEKz69W3l8z//sdWZJk0y87zr10uvvGKBUGFh9X3gvLc4pmXL9PeMS8W0afaa7tEjzU+0fr2t2nXuLF1ySdX3rVXLziL16mXR2fDhFlE/9JD9vMce0umnq9npp6tfvy0HJIceKu27r63krVhh8dSaNVsKxEyevOU1G9e8uZ04LimxKaatt92//mWbNP/+9wpvbtrUMlKXLEn9qQjuUCOJ9rgrr39/O1EzfLh09tnpmBkyIdNtEMqrVcvOfv/5z/aBtO++4cyjpmbNshXvK68MeyYIS9eulsWQq8HdV1/Z3/Bf/rL1bYMGSc89J40bV+EJ6Zzlvf27ywZz8WrRTZpYAHfaaXb82b37L4NepNfgwdLDD9uKcazgYFr99JNtAfv+e1s5TCR90TlbgFq+PLuDuyOPtNYHaf/7vecei6BGjrTcx0TVr299V44/3v4jXnlF+u9/bcXghhss0j7zTOn001V/223VsmXlRcsGDbKV9Xjgt2LFltTNzp0tjXannVL7Z1bo229tk+Cvf21LjZU488xg/h9yYMEY2aQmbRDK2m8/W1Fn311uKymx9+Sddw5vDuecY29+udQWIV4qnmIq+cs5W70rLt5S0juXDB9ul0cfvfVtRx1lr8lXXsnsnNJh7Vor2HfCCXaA2LmzdP75tgLTrZsdn336qR2wjxghXXutrdQR2GXWr35l+7AzlZq5erX9bZxxRs32pbVta1ussrVa+KZN9t6U9nThxYstV3nAgNR6AW23nZ0dGzPGctz/+U9bmrv4Ylv2Ovdc24hXyS+8dm1L6d1lFzsuPfTQLc3TnbMTcGkpKHPjjfbLvummKu8W1PsIwR1qJNngzjlL3Rk1ypa9kZvibRDCTL1q1sxOfj3zjJ15ywUjRlgWSYcOYc8EYSoqsjP/QZW7zqThw63IQEW91xo3tgDv1VdzM3CN27jRWhP84Q+2L+foo6VHHrE9MEuXWuuCSy+1VZi09wFDlZyz1bt3301ve5zFi+0yvt2rpu/hbdpY7PHjj8HPLVXffWf70ubNy8CTXX21bWq7887gxmzXztJhpk2zhuCnny69+KJF/nvvbemby5cH93zJmjXLNgFecEFCf0CjR6d+oozgDjVSkx535fXrZxvM338/8GkhQ2bPDi8ls6yLL7YPzCefTN9zzJtnm69TPRmxbp1VGWTVDkccYZejRoU7j5r6+WerWF62SmZ5gwbZCsXEiZmbV5BKSy29b/hw29Yzd661o/rtb63QAb3nss8ZZ9gCzbPPBj+299Z/8OGH7dhcSi6gb9vWLrOxP+vYsbbNJu19Vz/5xF5Mf/qTbZoPmnO2nDpkiEXjQ4ZY6c9LL7XVvMGDLac6rOXT666zJbnrrkvo7qWl0hdfpHbsQXCHGqlpj7uy+vSx1xtVM3OT97ZyF1alzLIOOMDaxPz738GvFGzYYCcDd9vNAtlttrHPh4MOsga6V15p1YzffFP67LPqVw/HjbN0HlogYKed7IRyrrVEePddW9WqKrjr398OfnOxaqb3VnXvueesmF2ulK/Pd7vvbu/L//lPsMftGzZYH8Jx42wvWirxSPPmlvK4eXMSDy4ttaDon/9MfgKV+P57KyzSo8eWSpNpUVpqL65WraRrrknjE8U0aSKdd56dZZo82dI033jDNsZ26WJLlUH0GkjUpElWvvPyyxOOojt1sr+XOXOSf1oSC1Aj8+dXnJaTiG22sQDvzTdtXy1nQnPLkiW2WpYNK3eSrd4NHmxnV1NJ4S9r1ixL+fz0U9tnc9BB0oIFltq/YIGlar3++tZn1Jo2tX2I7dtvuYx///LLdjIknteP/FZUZCcH1qxJ80FVgIYPt2Omgw+u/D7bbWfv76++WmELp6z2f/9nJ4quuKLigjHIXoMHSxddZJl5VdSpSNiKFRbkL11qabk9eqT2t1yrVvWFISv02Wf2D/vwQ/v51FOTP/iqwNixdjIm7a15nn7aAq2nn85cWdO4/fe3F/Ztt1m65pAhVo3tmmusOMv559sHczr7VVx9tUX3l1+e8EPatbPPhpkzk++3l5Urd999F/YMUJkFC2q+366s/v0tQPzii6BmhEwJu1JmeSedZGdFgyis4r302GP2WTBvnjR0qKXjnH22VXl97DELImfNsoPyxYst0+TFF6Xbb7d0rg4dLC3t+eetafFpp9nB8MMPW8GFRo1SnydyX1GRrQx88EHYM0mM9xbcFRVVn7ExaJCt7k+fnpm5BeHOO60X1m9+YwskuRSUwloi1K0bXGGVb76xbIzTT7cijEH+PSS0urhypaUvHnCAlWqNF+AIsBrdypX2Gu3ePc2fSytX2ofhgQfaLzQsjRpZJbbx4y1ovuCCLb2JOna0F/7SpcE/7zvv2Ne119oZ4ATVqmXTmjUryRVfSfLeZ92X1M3/978eWWbjRu9r1/b+2muTH2PhQu8l7//xj+Dmhcx47DH7v5szJ+yZbHHNNd7XquX9/PnJj7F8ufcnnmj/tt697W80VStXej9jhvdvveX9Qw95P3Nm6mMiGlav9r5ePe8vvzzsmSTms8/stfHoo9Xfd+lS753z/vrr0z6tQDz+uP3bTjzR+02bwp4NknXccd7vtJMdowRh9epgxon75hvv77zTLitVWur9c89536qVvYguuMD7H36w2zp18v6IIwKd08KF3v/8c6BDbu2KK+wFNmFCmp8oCWvWeP/009737GlzrFPH+xNO8P7FF72fPNkODEpLkx9/82bvu3Xzvn1779etq/HD58zxfuRI79eu9V7SJF/DOCorV+4aN7Yz4ezNyi6LFiXX466sNm3shBT/t7mnpMTSOMJsg1BefG/MQw8l9/j335f22ccaMP/zn7YXqk2b1OfVpIn1NTvmGJvjnnumPiaioWFDW9HNlX13VbVAKK9FC1ulzoWWCEOHWrGUoiJrmRX15utRduaZtm3gnXeCGS/odOmmTS3dc9GiSu7w1Vf2h3jaabbB+5NP7EOtWTO7fcAAq8q1YkXKc4mvHrZpY8faaTNrlvUNOeecmvWOyJRttrGc3rFjLZXsD3+w3/HJJ9tBarNm0rbb2ibp/v0ttzae3jlhgq30VbUU+/LLtr/jxhutT18Ndehg202SbY2QlcHd7rtb7vRJJ9nvHdkh2TYI5fXrZ6vjmdzTitSVlEi77ppdJcB33tk+9x591KpSJmrjRsuUOPxwe48fP94KpaQz9R6IKyqy7KB0ZAIFbfhw+zxu3Tqx+w8aJM2YsaXCYDYqLrYtTD162B7BJI69kEWOOcb6EmZ6S1eimja1r60qZq5ZYx9Ee+9thTceeMACu/LB0MCB1iNtxIiU5zJ8uPTWWykPU70//ckik7//PQNPlqLOna3QyqJFFri99JLttzj7bIuyvv7azgBdeaVVVSsstOpYDRvamdsjj7T9e7fcYvf74AOrjLnXXimlo5aW2laoZGTRYdoWtWtLb79txW3697dehQccEPasEFRw17+/ncx4+207cRJ1y5dbRd5GjX5ZcGPnne2AKZuCparMnp0dlTLLu/hiW3l78UU7g1udOXOsaMqECVZI65570nwGEyinb1/b0//OO+FuRanOTz9ZPYcrr0z8MYMGSZddZitj2Vic5JNP7Fi5Y0c7yOW1n/vq17eFkmzWpk25lbs33rDVogUL7IPrX/+qvJpiYaFtMH/9dQsukvTTT7aYVFCQ9BCJeftte3HddpsFQbmifn0LrCtbaVyxwv6/5s+3y7JfU6ZIy5b98v5vvplSSsBnn9l/eTKy9rCyeXPrBXTIIVZC/IMPSG0KWyo97so64ACrivvmm/kR3N1/v53M2XHHrVcra9e2N/2y1RXLX2ZDIY54G4RevcKeydb69LH3hgceqDq489423V98sQXUL75o2QFApu2/v7TDDpaamc3B3ejRlopfVQuE8tq1s2OjV17JvuDu88/t39KypR1fxLPegHRr00b68ktp7RfztM1f/mB7U7p2tb0B1X2w1q5tKU+vvmppJ3XrJjWHcePsGO6QQ5J6eGI2bLCzOx07WvAaJdtua/s49tmn4tvXrNlSWnvTppq9cVagSxc7oX7DDTV/bNYGd5J9SIwebX+IRUV2BjHVwALJmz/fVppSTWGpVUs69lg7uN6wIbmeebli/XqrxHv00ZYOsXq1vfbjr/+ylx98YGkb5asj7bDDlkBvl13sfTPAisgJ+e47a0CfLZUyy3LOKkZfeqlltlR0VnLFCunCC63Eda9eFmzzXoKw1KplJyVGj7aTDtlaofHtt63FwYEH1uxxJ5xgRfK+/jp79ujOm2crpvXr2++9VauwZ4R80qHNep025zY16HaLBWu3327BT6KB2sCB0hNP2IFC7941fv6VK21xaf/9a1S4sebuu89yst96K9oHdxVp2NCa1HXqFMhw9eol/yvM6uBOsuB/5EhrRVFUZH/XzZuHPav8NH9+6imZcf372z6pDz6wg5yoev5521fzxz/az40aWXp3584V33/zZunbb7cO/BYssLTI11/f8rmQSdnWBqG8s86yNLcHHrDPv7I+/NBWRxYutJT4v/yF4gkIX1GRneD68svkexmlU2mpBXdHHlnz1PHjj7fgbuhQO+kStiVL7Pe9dq3t4+/QIewZIWt16WJH1LvssuWrffst32+3Xc3PxowerdYXX2wfpCedZP032rat2RhHHGF72F5/Pangbvp0O76oqldlypYutT03xxyT8qoVUpP1wZ1kZxqGDbOzbkcdZXvw0nrmARWaPz+4N4Y+fewM6rBh0Q3uvJfuusv21B5xRGKPqV3bVpQqW1U66CBbncq0khK7zMY9d5JlS5xxhvTUUxb47rCDZUXcfLO1CdplFwvyCgvDnilgiorsctSo7Azupk61oCiZY7SOHe1979VXww/ufvzRAtTFi62Qyl57hTsfZDHv7cN63jzbnF1cbCkrZTVtWnngt8su0vbbbwn+Fi2ywiIvvijtvrtK3x6plQf21XbbJTG3Ro1sbm+8YVUoaxhgduxoMev22yfx3Im65ho7g3LXXWl8EiQiZ2rD9expG2Y/+8yq461dG/aM8sumTdbcM6iVu0aNLKh7880EG3vmoPfek6ZNszTKoNKuCgpsQ3RpaTDjJaqkxALPTKeD1sTFF1vFzMcftxMRhx4q/e1vFvRNmUJgh+zSvr2dLMnWlgjxFghHHZXc4084wTIzwqwIunq1bVX68ksrulTT9FLkGeeke++1A5Pp0y2X8fvv7UP3lVesouJZZ9mLd948SxO5/HL7Y+/Wzc4qxvdlHXuspee98YatZk2fruGb+urhh1M45hk40D7cZsyo8UObN09zR4KJE+33cemlFkkiVDkT3En2Wnn6aUurOOUU21eKzAiix115/frZybGvvgpuzGxy111WROXXvw5uzIICO5GY6d/Z7Nn2f5/kPu6M2HtvOwl0++3Svvva59+zz9pqHiv9yEZFRVZPYcOGsGeyteHD7WCwRYvkHj9okB3EJlvtLVUbNtgx98cf217b+EopkDDnLGA74AD7g/7Tnyz4e+MNW2lYscLKYU+ebMvUd95pfd06dLB9AEceaVV8/vpXqUEDtW5tCxPLlyc5n3797LKGL6pvv5Vmztx6P39gSktt/2CLFvZvRehyKriTrMfjAw/YiZVzz838Cka+CqoNQlnx96k33wxuzGwxe7alnF54ofVRC0q8WEimUzNLSrI3JbOs3//eir/stZetmp52WtgzAipXVGSrS+PHhz2TX/r+ewuKUtk2s/fetkf31VeDm1eiNm+2SswjR0qPPGJBHhA45yzPcf/9baPpH/9ovXVee80+gF5++RcbPNu0sctKm5lXZ6edLAXljTdq9LCJE21KaSvc9Mwz9oZx662cSc0S1QZ3zrnHnXPfOedmlLnuNufcTOfcZ865oc657Sp57Hzn3HTn3FTnXGCHoxdeaHtp/vtfS3mLalpfNklHcNeuna2wDBsW3JjZ4t57rQjBRRcFO26nTpbSmsngLt4GIVuLqZR14onWx+r994P9WwXS4fDDLd0521IzR42y1/3RRyc/hnO22FFcbPveMsV7e9998UVbxT/33Mw9N1CV5s1t39tWzcxrYuBAi9a+/Tahu3tvJ5t3392q9Abu55+tSlmPHok1mkVGJPJf/aSk8ln3oyXt5b3fR9IsSVdX8fjDvff7ee8DbZt4zTW2Qn7ffbavBukVVI+78vr3t0IXSacpZKGffrLU89NOC75/Z+3aliGSyeBu2TLbepALwZ1z9hmTK43hkd+23db+XrMtuBs+3FLKU212PGiQ7dfO5Am8a66Rhgyxy8svz9zzAtWpVcvaSSW9cidZ0Qkp4ZSnJUvS3Mbo73+3akX33pum6BHJqPZ/wns/VtLycteN8t5viv34saQa1nRNnXN2Vu6ccyy4u+eeTM8gvwTV4668fv0shWbEiGDHDdMjj1iqVbz9QdAKCqxAyKZN1d83CNleKRPIZX372smaTK5uVWXzZktnPOqo1FuGdO9uFd8zlZr5r39ZZtjvfmfZPUC26dUrqU4GW3TpYqmeCaZmprWNUUmJ7TM880wqlmWZIMLscyW9XcltXtIo59ynzrnzA3iuX3DOztAdf7ylZz79dNDPgLgge9yVFd+wH5V9d5s22WryYYdJ++2XnucoKLBN2V98kZ7xy4sHd7mwcgfkmqIi2zv+7rthz8RMmmR77oJoU1Wrln0+jxixdUX5oP3nP5Ydduqp0v33Z29jeOS3Dh2k3XZLYQDnLDWzojYNFfj2Wzsx37hxCs9ZmcsvtzzTW29Nw+BIRUrBnXPuWkmbJD1TyV0O8d4fIOloSRc753pVMdb5zrlJzrlJy5YtS3gOdepYRbw+fSy3PqzKXFGXruCuVi2rgjpiRDSqn776qrWMSNeqnbSlnHGmUjNLSuz/iT1sQPB69JCaNMme1Mzhw+313rdvMOOdcIK1KElndsZnn0nnn297GJ96KvUVRyBdvJfmzg0gNXP9etscW41TTrF2QIEbNcpWD6+7TmrVKg1PgFQkHdw5586W1E/S6d5XXNLEe78odvmdpKGSelQ2nvd+iPe+wHtf0Lx58xrNpUEDaehQazNyyinW5BzBCbrHXXn9+9s+tQ8/TM/4mXTXXXZW7thj0/ccu+1me3UyFdzF2yDUq5eZ5wPySd26FpRkU3B34IFWAT4IhxxihSReeSWY8cpbuVI66SQrWvjcc7xPIbs5Z5UrP/44hUEOOcT+4BNIzXROatgwheeqyMaNli63++52iayTVHDnnDtK0pWSBnjv11Ryn0bOuSbx7yX1lVTzzosJatLEPpR2281OamS6VHyUpaPHXVlFRfaBnOtVMz/+2L4uvTS9Z45r1bITGRMnpu85ysqVSplArioqsrP5c+aEO4+lS+2zM4iUzLjatS2LbNgwW8ELkvfSeefZe9Tzz0stWwY7PpAObdumWDGzTh07gzxsWJXN60aNStNJowcekL780vbbBV2IAYFIpBXCc5LGS9rTObfQOfcbSfdLaiJpdKzNwUOx+7Z2zg2PPbSlpHHOuWmSJkh6y3uf1rIZO+xgf8w77mibwWfNSuez5Y90tEEoq3FjO3Od6/vu7r7bVtTOOSf9z1VQYG101q9P7/OULaMMID3iDbbDXr2Lp04GGdxJlpq5apX0zjvBjvvAA9by4JZbrFAFkAvatLECSqtXpzDIgAHSDz9IH31U4c3eS1OnWqeCQP3wg3TDDdagPd6sGFknkWqZp3nvW3nv63rv23rvH/Pe7+69bxdrcbCf9/53sft+670/Jvb9XO/9vrGvrt77W9L9j5HsRTN6tB303nFHJp4x+tId3En2HjFrVu4G5F9/bf1KzzsvTRuXy+ne3TIjZqRtLdz88IO0YgXBHZBOHTtam5mwg7vhw619S9DFoHr3thNfQVbNnDjR2iH16yddeWVw4wLplnIzc8mCq7p1K03N/PZbac2aNFS5vu8+Oyi4/XaqFmWxSDal2H13qWdP6YMPwp5JNKSrx11Z8RNAuZqaef/9dqbskksy83zx/lPpTj+mDQKQfs7Z6t2771aZZZVWmzZZ5svRRwd/zFavnu2tfv31YFq4LF9u++xat7YCKrTXQi5p3dpeYykFd02b2lmTSoK72bPtOVKqzFneqlXWz27gQGmvvQIcGEGL7Ftiz56WEvz992HPJPelq8ddWbvsIu2zj5Wzrrg8T/ZatcpacpxwgtS+fWaes317S0NO97472iAAmVFUZIWlwtov/vHH9vxBp2TGDRpkQdn776c2TmmpdNZZtjLx4otSs2bBzA/IlHr1pAsvDCCVeMAAS3eaOXOrm2bPtr19gRZTeeQRyye96qoAB0U6RDq4k6Rx48KdRxSkqw1CeX/6k+WIv/VW+p8rSE89ZVkK6Wx/UJ5ztnqX7gPB2bPtrPiuu6b3eYB8d8QR9roOKzVz+HArfhLf/xe0I4+0A81UUzNvu80yPO64w9pIALmoRYsACq/172+X5VbvvLcT8vvsk+L4ZcX3Oh12mJXTRVaLbHDXvbutNI0dG/ZMcl+mgrtf/9oafN54Y+6s3pWWSvfcIxUWSgcdlNnn7t7d9tytXZu+5ygpkXbemYJYQLrtuKO0//7hBneHHGJ749KhYUNL+Rw61N43kzF2rHTttZaSmakUeCAdli+3AkY//ZTCIO3a2ZtGueDOOSumGe+JG4j//tfySK++OsBBkS6RDe7q17cDbvbdpSbdPe7KqltXuuYaSzUcOTL9zxeEt96y1a0wWr0UFNj+nGnT0vcctEEAMqeoSBo/3lK9M2nRInsfSVdKZtygQdLixcn1+Fq6VDr1VDsB+Oij1HJAbtu40V4HCxakONDAgVYx87vv/nfVjz8GfIJ882bpX/+yQDJdS/sIVGSDO8lSM6dMyfwHZZSku8ddeYMH236yv/0tN1bv7rrL8tpPOCHzzx0vqpLOfXe0QQAyp6jIDvpS3ZdWU2+/bZfpDu769bP9RjVNzdy82TI7fvzRqhI3bZqe+QGZ0ry5vRZSKqoi2b477/+3n6W0VHr44S2v6UAMHWp7+66+mrMqOSLywd3mzXYmFMnJRBuEsurVs/ePjz+Wiosz85zJmjZNGjNG+v3vbdUx01q3trLl6dp3t3y5HUxRKRPIjIMPlho0yHxq5vDhluHVtWt6n6dpU9tb+MorNTt597e/WSXRf/874H1EQEhq1bLP8JSamUvWt6Rdu/+lZi5cKK1bF+Axm/fSP/5hBwKDBgU0KNIt0sHdQQfZC4jUzORlOriTpLPPttWwbF+9u/tu20dy3nnhPL9zllOfruCOSplAZjVoYBX0Mhncbdhgz5eOFggVGTTIPlemTk3s/iNHSjffbJ8L55yTxokBGda2raUbp9QexDlbvRs1Slq79n9F0Dp0CGiS77wjTZ5szSRTrgCDTIl0cNe0qaUIU1QleZnocVde/fpWaXfcuMynJyVqyRLp2WftgGP77cObR0GBtfxIR+oxwR2QeUVF0hdfBJCulaBx4+z9I90pmXEDB9rB5yuvVH/fhQulM86wlloPPJD+uQGZ1LattM02KRZVkSy4W7NGKi7W7NlWBK1BgyBmKFu1a93a9swgZ0Q6uJMsNfOTT6yKK2ouEz3uKvKb30itWtnqXTZ68EE7433ppeHOo6DAVjcnTw5+7HgT1MDOAAKoVrxeQaZW795+29LK+/TJzPPtuKN06KHV77vbuFE65RRLMXvppYD7dQFZYM89pcsvt9dESg49VGrSRBtefkNLlgS4leKTT2zvyeWXUzI7x+RFcLdunfTpp2HPJDdlqg1CeQ0aSH/5i/Tee9m38rpunQV3/fpJHTuGO5du3ewyHamZJSW2YhvYGUAA1dp7b+uBlangbvhwOzZs3DgzzydZauaXX9pXZa66yooAPvqoHQQDUeNcQKnQ9etLRx+tuiPf1OmnlWqvvQIYU5JuvdVSk8Lae4KkRT64O+QQu2TfXXLCCu4kez9p2VK66aZwnr8yzz4rLVsWTvuD8lq2tAAsXcEdKZlAZtWqZUVH3nkn+X5wiZo/31JAM5WSGXf88XZZ2erd0KHSnXdKF19sq3dAVH3yifTUUwEMNGCA3JIl2uOnicH0qvziC+m116xiXJMmAQyITIp8cNeihdSpU/at/uSCTPa4q0jDhtIVV9hBzkcfhTOH8ry3Qir77CP17h32bEy6iqrMnk2lTCAMffta26rp09P7PJlqgVBemzbSgQdWHNzNnWuFU7p3l+64I7PzAjJt0yZp3jxp9erUxtnc92j5WrW19oU3qr9zIv71LzsI+/3vgxkPGRX54E6y1MwPP7S2CEhcpnvcVeR3v7N89GxZvSsutgOuyy7LnnYvBQUWiKW8KbuMH3+UfviBlTsgDEccYZfpTs0cPtz21IaRXn7CCbZXeN68LdetWyedeKKtXr74Itt8EH1t29plqgWUvl7VTPN37qVab76e+qS+/lp65hlLn0p5QyDCkDfB3YoV0owZYc8kt4TRBqG8Ro2kP/9ZGjFCmjAhvHnE3X23rQafdlrYM9ki3sw8yH2lc+bYJcEdkHlt2khduqQ3uFu3zk5WHXNMOCeq4qmZQ4duue6yy6QpU6Snnw73cwfIlFat7GRGqsHd7NnSrE4DVL/k8y0f4Mm6/XZ7U7j88tTGQWjyJriT2HdXU9kQ3EnSRRdJzZqFv3r31VfSW29JF16YXUVG0lFUZfZsuyS4A8JRVGTbCdatS8/4778vrV1r/e3CsNtu0r77bknNfOYZ6eGHrZ1Wv37hzAnItHr17IRxqs3MS0qk1X0G2A9vvpn8QMuWWRWjM87IbA8sBCovgrv27W3pm+CuZsLocVeRJk2kP/1JGjYsPSX/E3XPPfZGfOGF4c2hIs2a2YFSkMFdvMfdbrsFNyaAxBUVWWD34YfpGX/4cDtJddhh6Rk/ESecYPup331XuuACOxF7yy3hzQcIQ9euVhwtWT/9ZHt0Wx3cwZpCvp5Caua999obz5VXJj8GQpcXwZ1zUq9edhbU+7BnkzsWLLCUgWzY93DJJdJ224W3erd8uVW0Ov301N6E06WgQJo4MbjxSkq2NFgFkHmHHmr959KVmvn229Lhh4fbP27QIPtMPvpoS8F//nmpTp3w5gOEoWdPK6KUrGXL7L1ijz1kDc0/+MAOWmpq5Urp/vstZ7pTp+QnhNDlRXAn2YtnyZLUU5HzSZhtEMrbdlvbj/Haa9K0aZl//iFDpDVrsqP9QUUKCiwYX7YsmPFmzyYlEwhT48bSQQelJ7ibPdu+Ml0ls7wuXayH3caN1mKmdetw5wOExXtpw4bkHrvHHtYXeIcdZMHd5s1bSuHWxJAhtgx41VXJTQRZI6+CO4nUzJrIpuBOkv7wB6lpU+nmmzP7vBs32sms3r2tBUI2CrqoSkkJbRCAsBUVWYGRoE7axIXVAqE856QHHpCee07q0yfcuQBhibdYSuVETp06scJI3btLO+1U89TM9eutuWSfPjYGclreBHedO9veJIK7xITd464i229vAd7LL2e28unLL1slqz/+MXPPWVMHHGBv7EHsu1uxwg4mWbkDwlVUZAd+xcXBjjt8uK2YdegQ7LjJ6NOHRuXIb87Z8WkyFTPnzJEeeshaF0my0pv9+1uJ8fXrEx/oqaekxYulq6+u+SSQdfImuKtVy1bvCO4S8+23FuBlU3AnWVpk48aZ23TvvXTXXbaKFfZZ7qo0bWoHa0Hsu4sXUyG4A8JVUGB7jYNMzVy9Wnrvvex+PwPyTZs2tnVo48aaPW72bOn77+0Y4H8GDJB+/tlK4iZi82ZrWl5QYClKyHl5E9xJFtyVlNjJCVQtW9oglLfDDlZc5YUXpJkz0/98H31kAdOll9oJgmxWUBDMyl08uCMtEwhX7dq2sjV6dHDFwMaMsRP6BHdA9mjbViottQCvJmbPtuO0unXLXNmnj1VKSjQ18+WXbQnw6qvDaXqJwGX54Wqw2HeXuGwN7iRri7DNNplZvbv7bjtzftZZ6X+uVBUU2Irrt9+mNk48uMuGlC0g3xUVWYr8rFnBjDd8uFWmjH8eAghfmzZ2WZN+d8uXWzrmVidit9nGym++8Ub1Z4W8l2691VJ/jjuuJlNGFsur4G7//e1kBsFd9eLB3c47hzqNCjVvbo3Nn312S7PtdJg71xrsnn++pYJmu/ge6FSLqpSUWNW6Ro1SnxOA1BQV2WUqqZnr19vr+t13rV9onz7Z0eIGgGnSxF6XNTnmih//VJhlM2CARYpTp1Y9yMiRdp+//CX705OQsLz6n6xb10pLE9xVb/58O8DP1gOAP//ZGor//e/pGb+42M5s16tnaaC5YL/97L051X13s2eTkglkiw4d7Kuy4M57q14+bZr05ptW2feKK6xIyYEH2vt4gwb2mu7Tx1YBTzgho/8EAAno2XPLCl4idtjBTuo2a1bBjf36WYpldamZ//iH5YSefnqN5orslnftQnv1km64wT4Mt9su5MlksWxrg1Bey5bS734n3Xef9Ne/BpdCuGGDjXfbbVLHjnaw1K5dMGOnW8OGUteuqe+7KymxzwUA2aGoyDIVnntO+vpr62kZv1ywwGonlFW/vq0AtG9vDcLbt9/y8667Zvd7O5CvNm60bRUtW9oJmersvnsVhc+aN5d+9StLzbzhhorv89FH0tixtv+kXr0kZ41slHfBXc+edqbzww+lY48NezbZa/58W+XMZldcIT34oJ14euSR1MebNUv69a8trfG886xKZq6lJhYUWNqV98nti/75Z2npUiplAtnk6KOlhx+29yfJ2sK0by/ttpt0+OG/DN7at7fjOjKsgNzy7bfSE09Ip51mW+Cq8tNP9hm/7bZV3GnAAEu3/Oabis9S33qrLf/99repTBtZKO/e/gsLLT2T1MzKZWOPu4q0bm1B2JNP2tnrZHkvPf647cmcN8/22Q0ZknuBnWQpGsuW2Vn9ZFApE8g+AwZI48ZZf8+VK62QwpQp0muvSffeK11+uXTSSVKPHnbWn8AOyD2tWtlrN5F+dx99ZCnYmzdXcaeBA+3yjTe2vm3GDEtN+sMfcvNgB1XKu4+Ahg2lbt0I7qqSrT3uKhLfA3zrrck9/scfpZNPln7zGwv8p02Tjj8+2DlmUkGBXSabmkmPOyD7OCcdfLClXTdpEvZsAKRDvXpSixbVV8z03jKNOnSwdimV2nNP219SUXD3z39aUJcrRQVQI3kX3EmWmjlxorR2bdgzyU7Z3AahvLZtpXPPlR57zFYba2LsWGnffe3s9623WsGCtm3TMs2M2WcfW5lONbjbbbfg5gQAAKrXpo2dYK+qg8EPP1haZkIZNgMGWHPLlSu3XDdvnm3gveCCSqqxINflZXDXq5dtXP3kk7Bnkp1yKbiTpKuusjfCf/0rsftv3Chdd5102GFWeOCjj2wFsMozYDmifn1p772TD+5mz5Z22ik3Wj8AABAlbdtK69ZZAFeZeAuEhDJsBg60g56RI7dcd/vtlvL0pz+lNFdkr7wM7g4+2NJcSM2sWDb3uKtI+/bS2WdbUZXqGnjPmWMrt7fcYo+ZMmVLf7io6N7dgrvqepdWpKSE/XYAAIShY0fbJlJVNffZsy19M6GK7wcdZEVT4i0Rli61IgNnnVWzvgvIKXkZ3G2/vbTXXpkN7saMka6/3k6gZLts73FXkauvtn2Ct91W8e3eS//5j/WCmzlTeuEFe3+L4gpVQYGlbMyZU/PHlpSw3w4AgDA0amSFLetUUcv++OOl445LcMData230Vtv2QHoPfdI69dbuXFEVl4Gd5Kt3owfbwFBupWWWmrzjTda8Y7169P/nKnI9h53FenQQRo8WHroIWnJkl/etmKF9ec880wL7qZNs/+HqEq2qMqqVdLixQR3AACEZcECOz6tTJMmdgI+YQMH2hnf4cOlBx6QTjzRlggRWXkb3PXqZQezU6em/7neftuW0Y87zop3DBworVmT/udNVi4Gd5J0zTXWhPyOO7Zc99FHFtC9+KJ0003Se+9ZGmeUde1qDVBrGtzFV/pIywQAIBwlJVbgraJMrwkTkjhuLSqyVKzzzrPCKlddFcQ0kcXyNrjr2dMux45N/3PddZdtkn3xRavqOGqUNaX9+ef0P3dN5UqPu4rssYc1+f33v2317m9/s/9n56xH1HXXRaNoSnXq1rWAduLEmj2ONggAAISrTRvL+Fq8+JfXe2/HMrNm1XDAxo2lPn2sCW7fvtIBBwQ2V2SnvA3uWre2VL5077v77DOpuNhaidSta2X7n31W+vBDO5ny44/pff6ayqUedxW59lprcdG1q3TDDZaOOXWqdOCBYc8sswoKpMmTq2lwWg7BHQAA4Yq3ZCrfzPy772zhLansmkGD7PLqq1OaG3JD3gZ3kq3qjBuXXFXBRN19tzVOP++8Ldedeqr0yitWqfHww+0Fmy1yrQ1CeZ062d66jRul//5XevppqWnTsGeVeQUFlnZckzN8s2dLLVvSJBkAgLA0bixtu+3Wzcxr1AKhvHh58MMOS3F2yAV5H9x9/71VT0yH776TnnnGKs6W7xM5cKD05pt28H3ooVufoQlLrgd3krVEWLzYVu3yVTJFVaiUCQBA+Nq2lZYv/+V1s2dLrVoleQK2dm3br4G8kNfBXa9edpmufXcPPmgFPi69tOLb+/aVRoywszO9em0JrMKUaz3uKlK3rpUTzmedOtnvoCb77gjuAAAI34AB0vnnb/m5tNS+KHKJROR1cLf77paGlo59d+vWWWGPY4+V9tyz8vv16mV78pYvt+9rvFE2YLnY4w5bq13b9kwnunK3Zo2tHlMpEwCAcNWvb8Xg4mrVsubmZFUiEXkd3DlnqZnpCO6ee87SMi+7rPr79uhhJfrXrbMAb8aM4OeTqFxtg4CtFRRYin0ivRzjbRBYuQMAIFzeS2+8Ya0PJFu1k34Z8AGVyevgTrLg7uuv7Sso3lshlb33tuqzidh3X0sPrV3b9uB9+mlw86kJgrvoKCiwEwZffFH9famUCQBAdnDOqpfPnGnHlPfeawUAgUTkfXAX33cX5OrdmDHWAuGyy2p2lqVTJ5tH06ZS797WLiGTcrnHHbbWvbtdJrLvLqUqXAAAIFBt29p2iW+/lX76iUrWSFxCwZ1z7nHn3HfOuRllrmvmnBvtnJsdu9y+kseeFbvPbOfcWUFNPCh7723BVJBFVe66S2re3Bpq11SHDjaXnXaygivFxcHNqzq53uMOv7TbblZOOZF9dyUl9je77bbpnxcAAKhamzbS+vXS+PG2UMDJVyQq0ZW7JyUdVe66qyQVe+/3kFQc+/kXnHPNJF0vqVBSD0nXVxYEhqV2bengg4NbuZs1Sxo2TLrwQqlBg+TGaNfOArwOHawgy1tvBTO36kShDQK2qFVL6tYt8eCODw4AALJDvJn5jBlW6C7fq4AjcQkFd977sZLKddzQQElPxb5/StJxFTz0SEmjvffLvfc/ShqtrYPE0PXsKX35pfW8S9W990r16kkXXZTaOC1bWpGVvfeWjjtOevnl1OdWHYK76CkokKZNs7N/VZk9m+AOAIBsseOO0vax5RAqWaMmUtlz19J7vzj2/RJJLSu4TxtJ35T5eWHsuqzSs6ddprpZ9ccfpSeesHTMlhX9Nmpohx2kd96RCgulU06Rnn469TGrEoUed/il7t2ljRul6dMrv8/atdZrkQ8PAACyg3PSeedZDYYuXcKeDXJJIAVVvPdekk9lDOfc+c65Sc65ScuWLQtiWgnr3t16iqSamvnII9YvLJH2B4nadltp5Eh7cZ91lvTQQ8GNXR497qKnoMAuq0rNnDvXLlm5AwAgezRsaIX/WrQIeybIJakEd0udc60kKXb5XQX3WSSpXZmf28au24r3foj3vsB7X9C8efMUplVz9evb6lgqRVU2bpTuu086/HBraxCkRo2kN9+U+vWzvXx33hns+HG0QYie9u1tBbiq4I42CAAAANGQSnD3hqR49cuzJL1ewX1GSurrnNs+Vkilb+y6rNOzpzV8XrUquce/+qqltv3xj8HOK65BA3uOk06SLr88PW0SCO6ixzlbvasquKMNAgAAQDQk2grhOUnjJe3pnFvonPuNpFslFTnnZks6IvaznHMFzrlHJcl7v1zSTZImxr5ujF2XdXr2lDZvtpKzybjrLtuzdOyxwc6rrLp1bU9fy5bSNddYY8ug0OMuurp3t2pba9ZUfHtJia3ubZ9VdWwBAABQU4lWyzzNe9/Ke1/Xe9/We/+Y9/4H730f7/0e3vsj4kGb936S9/63ZR77uPd+99jXE+n6h6TqoIOsdHwy++7Gj5c++US69FIbI50aNZKuu85SSEePDm5cetxFV0GBnbiYNq3i22mDAAAAEA1pDkVyR9Om0v77J7fv7q67pO22s4InmXDeebaXKsjVO9ogRFd1RVVmz6ZSJgAAQBQQ3JXRs6etwFXXE6ysBQukV16xgKtx4/TNraz69aUbbpA+/VQaOjSYMQnuoqt1a2mnnSoO7tats3RcVu4AAAByH8FdGT172sHup58m/pj777eiFb//ffrmVZEzzpA6dbIUzc2bUx9vwQK7bNeu6vsh9zhn++4mTtz6tnnzbPWX4A4AACD3EdyVccghdpnovrtVq6y33YknZj4oqlNHuukm6csvpWeeSX28+fOlVq2sKieip6BAmjlT+vnnX14fr5RJWiYAAEDuI7gro0ULWw1LNLh74glpxYr0tT+ozqBB0gEHWIrmhg2pjUUbhGgrKLAVuilTfnk9Pe4AAACig+CunJ49pXHjqk91LC2V7rlHOvBAa4Aehlq1pJtvttS6xx5LbSyCu2jr1s0uy++7KymxFgjNmmV+TgAAAAgWwV05PXvaatyMGVXfb9gwac6c8Fbt4o46ytJJb7qp8j5m1dm8Wfr6a4K7KGvZ0lKHy++7o1ImAABAdBDcldOzp11Wl5p5113SzjtbamSYnJP+/ndp8WLpgQeSG4Med/mhe/eKV+5IyQQAAIgGgrty2reX2ratOribOlV67z2rkFmnTqZmVrmePW0F79ZbbdWxpmiDkB8KCiyY+/FH+3n9eluxJbgDAACIBoK7cpyTevWy4K6yBuF33y01aiT99rcZnVqVbr5ZWr5cuvPOmj+W4C4/xJuZT55sl/Pn295RgjsAAIBoILirQM+eluY4Z87Wty1ZIj33nHTOOdJ222V8apXq1s1aMtx5p7RsWc0eGw/udt458Gkhi8SLqsT33dEGAQAAIFoI7ipQ1b67f/9b2rhRuvTSzM4pETfeaEVV/vnPmj2OHnf5oVkzabfdtuy7ow0CAABAtBDcVaBzZzsQLh/crVsnPfig1L9/dh4Qd+4snXmmdP/90sKFiT+ONgj5o6Dgl8HdtttKO+wQ7pwAAAAQDIK7CtSqZat35YO7Z56Rvv9euuyyUKaVkOuvt31UN9+c+GMI7vJHQYG0YIGl7sbbIDgX9qwAAAAQBIK7SvTsaSsbixfbz95b+4N995UOOyzUqVVpl12k88+3pubxtLuq0OMuv8SLqkyaRBsEAACAqCG4q0T5fXfvvCN9/rk1Lc/2lY5rr5Xq1pVuuKH6+9LjLr8ccID9/X70ka3YEtwBAABEB8FdJfbfX2rYcEtwd/fdUsuW0qmnhjqthLRqJf3hD9Kzz0rTp1d9X9og5JemTaU995ReftnSd6mUCQAAEB0Ed5WoW1c66CAL7mbOlIYPly66SKpfP+yZJebKK6UmTaS//rXq+xHc5Z+CAvublli5AwAAiBKCuyr06iV99pn0t79ZUPe734U9o8Q1ayZdcYX0+uvShAmV348ed/knvu9OIrgDAACIEoK7KvTsaYVUnn9eOuMMqUWLsGdUM5deKjVvbnvwKkOPu/zTvbtdNm1qfx8AAACIBoK7KhQWWnqmlN3tDyrTpIl09dVWDObddyu+D20Q8s9++1m7j913z/7iQAAAAEgcwV0VGjaUDj/cmpbvtVfYs0nOhRdKbdva6p33W99OcJd/GjaUDjnETl4AAAAgOuqEPYFsN2xY2DNITYMG0v/9n/W+GzbMAtW4eI+7U04Jb34Ixzvv2OodAAAAooPDu2rUrbslNTNXnX22peBde62Vv4+jx13+qltXql077FkAAAAgSAR3eaBuXenGG63n3QsvbLmeNggAAABAdBDc5YlTTpH23ttSNDdutOsI7gAAAIDoILjLE7VqSbfcIpWUSE89ZdfR4w4AAACIDoK7PNKvn3TggdaUfd06etwBAAAAUUJwl0ecs9W7hQulhx6iDQIAAAAQJbRCyDO9e0t9+liQV6+edOihYc8IAAAAQBBYuctDt9wiff+9tUJg5Q4AAACIBoK7PFRYKA0caN8T3AEAAADRQHCXp265RWrXzgqsAAAAAMh97LnLU127Sl9/HfYsAAAAAASFlTsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIiApIM759yezrmpZb5WOucuK3efw5xzK8rc5/9SnjEAAAAAYCt1kn2g9/4rSftJknOutqRFkoZWcNcPvPf9kn0eAAAAAED1gkrL7CNpjvd+QUDjAQAAAABqIKjg7lRJz1Vy20HOuWnOubedc10Dej4AAAAAQBkpB3fOuXqSBkh6qYKbJ0tq773fV9J9kl6rYpzznXOTnHOTli1bluq0AAAAACCvBLFyd7Skyd77peVv8N6v9N6vin0/XFJd59yOFQ3ivR/ivS/w3hc0b948gGkBAAAAQP4IIrg7TZWkZDrndnLOudj3PWLP90MAzwkAAAAAKCPpapmS5JxrJKlI0gVlrvudJHnvH5J0oqQLnXObJK2VdKr33qfynAAAAACAraUU3HnvV0vaodx1D5X5/n5J96fyHAAAAACA6gVVLRMAAAAAECKCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIgAgjsAAAAAiACCOwAAAACIAII7AAAAAIiAlIM759x859x059xU59ykCm53zrl7nXMlzrnPnHMHpPqcAAAAAIBfqhPQOId777+v5LajJe0R+yqU9GDsEgAAAAAQkEykZQ6U9LQ3H0vazjnXKgPPCwAAAAB5I4jgzksa5Zz71Dl3fgW3t5H0TZmfF8auAwAAAAAEJIi0zEO894uccy0kjXbOzfTej63pILHAMB4crnfOzQhgbttKWsE4GRmLcTI3FuNkbqwdJVWWcl4T2fY7yrZxghyLcTI3FuNkbizGydxYjJO5sRinenvW+BHe+8C+JN0g6c/lrntY0mllfv5KUqtqxpkU0HyGME5uzSmq42TjnKI6TsBz4r0o9/7PGCfH5hTVcbJxTlEdJxvnFNVxsnFOUR0nNlaNj0NSSst0zjVyzjWJfy+pr6TyK25vSDozVjXzQEkrvPeLU3neGniTcTI2FuNkbizGyexYQci231G2jRPkWIyTubEYJ3NjMU7mxmKczI3FOGngYlFhcg92roOkobEf60h61nt/i3Pud5LkvX/IOeck3S/pKElrJJ3jvd+qZUK5cSd57wuSnhgABID3IgAAEJZkjkNS2nPnvZ8rad8Krn+ozPde0sU1HHpIKvMCgIDwXgQAAMJS4+OQTLRCqDHvPQdUMc65x51z35UtMOOc29c5Nz7WPP5N51zTMOeI9HDOtXPOjXHOfeGc+9w5d2mZ237vnJsZu/5fYc4zysJ8L3LOHeWc+8o5V+Kcuyp23WPOuWnOuc+ccy875xqHNT+kTyXv+82cc6Odc7Njl9uHOUekTyX//y8456bGvuY756aGOEWkSVWf+7HbL3fOeefcjmHNEZmVzHFISmmZSD/nXC9Jq2S9AveKXTdRVrjmfefcuZJ29d7/Ncx5InixfpCtvPeTY3tbP5V0nKSWkq6VdKz3fr1zroX3/rsQp4qAOedqS5olqUjWPmaipNMkLfTer4zd505J33nvbw1tokiLSt73/yVpuff+1liwv733/i9hzhPpUdH/f7nb75DVL7gx45NDWlX2ue+9/8I5107So5I6SermvQ+ikjMiKCtX7rCFt7YSy8td3VFSvN3EaEknZHRSyAjv/WLv/eTY9z9L+lLWI/JCSbd679fHbiOwi54ekkq893O99xskPS9pYJnAzknaRtZnFBFTyfv+QElPxb5/SnaiBxFUyf+/pP+99k+W9FxGJ4WMqOJzX5LuknSleN+PJOdcA+fchFh2zufOub/Frr8klsGT8IotwV1u+lz2QS9JJ0lqF+JckAHOuV0k7S/pE1lw39M594lz7n3nXPdQJ4d0aCPpmzI/L4xdJ+fcE5KWyM7e3pf5qSEkLctUml4iW8FH/ukpaan3fnbYE0F6lf3cd84NlLTIez8t3FkhjdZL6u2931fSfpKOinUZ+FDSEZIWJDoQwV1uOlfSRc65TyU1kbQh5PkgjWL7ql6RdFls5aaOpGaSDpR0haQXY2dzkQe89+dIai07o3tKyNNBCGKFyjh7n59OE6t2kVf2c1/SJknXSPq/MOeE9PJmVezHurEv772f4r2fX5OxCO5ykPd+pve+r/e+m+xNfk7Yc0J6OOfqyt7gn/Hevxq7eqGkV2NvBBMklUpic3W0LNIvV+Tbxq6TJHnvN8tSNUnJzh9LY/tx4vtySMfOM865OpIGSXoh7LkgfSr43N9N0q6Spjnn5ss+DyY753YKb5ZIB+dc7VixpO8kjfbef5LMOAR3Ocg51yJ2WUvSdZIeqvoRyEWx1bjHJH3pvb+zzE2vSTo8dp+OkupJYmN1tEyUtIdzblfnXD1Jp0p6wzm3u/S/v40BkmaGOEdk1huSzop9f5ak10OcC8JxhKSZ3vuFYU8E6VHR5773frr3voX3fhfv/S6yE7wHeO+XhDhVpIH3frP3fj9ZAN/DObdVQaVEENxlOefcc5LGS9rTObfQOfcbSac552bJDuy+lfREmHNE2hwsabCk3mVKYB8j6XFJHWJlsp+XdJan7G2keO83SbpE0khZ+uWLscunnHPTJU2X1EoS1fIiqJL3/VslFTnnZssO8qmSGlGV/P9LdpKHlMxoq+xzH3nEe/+TpDGSjkrm8bRCAAAAAICQOOeaS9rovf/JObeNpFGS/um9Hxa7fb6kgkRaYLByBwAAAADhaSVpjHPuM9nWjNHe+2HOuT845xbKUjU/c849Wt1ArNwBAAAAQASwcgcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARQHAHAAAAABFAcAcAAAAAEUBwBwAAAAARUCfsCQBAGJxzmyVNl1RX0iZJT0u6y3tfGurEAAAAkkRwByBfrfXe7ydJzrkWkp6V1FTS9WFOCgAAIFmkZQLIe9777ySdL+kSZ2o7525zzk10zn3mnLsgfl/n3F+cc9Odc9Occ7eGN2sAAIBfYuUOACR57+c652pLaiFpoKQV3vvuzrn6kj50zo2S1Cl2W6H3fo1zrlmIUwYAAPgFgjsA2FpfSfs4506M/bytpD0kHSHpCe/9Gkny3i8PaX4AAABbIbgDAEnOuQ6SNkv6TpKT9Hvv/chy9zkyjLkBAAAkgj13APKec665pIck3e+995JGSrrQOVc3dntH51wjSaMlneOcaxi7nrRMAACQNVi5A5CvtnHOTdWWVgj/kXRn7LZHJe0iabJzzklaJuk47/0I59x+kiY55zZIGi7pmgzPGwAAoELOTlIDAAAAAHIZaZkAAAAAEAEEdwAAAAAQAQR3AAAAABABBHcA8oZz7nHn3HfOuRllrtvXOTfeOTfdOfemc65p7Pp6zrknYtdPc84dVuYx3WLXlzjn7o0VXQEAAAgVwR2AfPKkpKPKXfeopKu893tLGirpitj150lS7PoiSXc45+LvmQ/Gbt8j9lV+TAAAgIwjuAOQN7z3YyUtL3d1R0ljY9+PlnRC7Psukt6NPe47ST9JKnDOtZLU1Hv/cawn3tOSjkvvzAEAAKpHcAcg330uaWDs+5MktYt9P03SAOdcHefcrpK6xW5rI2lhmccvjF0HAAAQKoI7APnuXEkXOec+ldRE0obY9Y/LArdJku6W9JGkzWFMEAAAIBF1wp4AAITJez9TUl9Jcs51lHRs7PpNkv4Yv59z7iNJsyT9KKltmSHaSlqUqfkCAABUhpU7AHnNOdcidllL0nWSHor93NA51yj2fZGkTd77L7z3iyWtdM4dGKuSeaak18OZPQAAwBas3AHIG8655yQdJmlH59xCSddLauycuzh2l1clPRH7voWkkc65UtnK3OAyQ10kq7y5jaS3Y18AAAChclbsDQAAAACQy0jLBAAAAIAIILgDAAAAgAgguAMAAACACCC4AwAAAIAIILgDAAAAgAgguAMA5AXn3Gbn3FTn3OfOuWnOuctj/Q2reswuzrlfZ2qOAACkguAOAJAv1nrv9/Ped5VUJOloWa/DquwiieAOAJAT6HMHAMgLzrlV3vvGZX7uIGmipB0ltZf0H0mNYjdf4r3/yDn3saTOkuZJekrSvZJulXSYpPqSHvDeP5yxfwQAAFUguAMA5IXywV3sup8k7SnpZ0ml3vt1zrk9JD3nvS9wzh0m6c/e+36x+58vqYX3/mbnXH1JH0o6yXs/L4P/FAAAKlQn7AkAAJAF6kq63zm3n6TNkjpWcr++kvZxzp0Y+3lbSXvIVvYAAAgVwR0AIC/F0jI3S/pOtvduqaR9ZfvR11X2MEm/996PzMgkAQCoAQqqAADyjnOuuaSHJN3vbX/CtpIWe+9LJQ2WVDt2158lNSnz0JGSLnTO1Y2N09E510gAAGQBVu4AAPliG+fcVFkK5iZZAZU7Y7f9W9IrzrkzJY2QtDp2/WeSNjvnpkl6UtI9sgqak51zTtIyScdlZvoAAFSNgioAAAAAEAGkZQIAAABABBDcAQAAAEAEENwBAAAAQAQQ3AEAAABABBDcAQAAAEAEENwBAAAAQAQQ3AEAAABABBDcAQAAAEAE/D+RYZrGGQDmvQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(15,8))\n",
"training_set['Y_t'][3600:].plot(c='blue')\n",
"testing_set['Y_t'].plot(c='blue',alpha=0.5, style=['--'])\n",
"testing_set['pr1'].plot(c='red')\n",
"#testing_set['pr2'].plot(c='magenta')\n",
"plt.ylim((5,25))"
]
},
{
"cell_type": "markdown",
"id": "subjective-leeds",
"metadata": {},
"source": [
"##### Υπολογισμός του συντελεστή μερικής αυτοσυσχέτισης PACF(2)\n",
"\n",
"$$Y_t = A_1 + B_1 Y_{t−1} + (\\epsilon_1 )_t$$\n",
"$$\\hat y_t = a_1 + b_1 y_{t−1}$$"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "fitting-commercial",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.77420758])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = training_set[['Y_(t-1)']] # black box\n",
"y = training_set['Y_t']\n",
"model.fit(X,y)\n",
"model.coef_"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "broken-honey",
"metadata": {},
"outputs": [],
"source": [
"training_set['pr_Y_t|Y_(t-1)'] = model.predict(X)\n",
"training_set['e_pr_Y_t|Y_(t-1)'] = training_set['Y_t'] - training_set['pr_Y_t|Y_(t-1)']"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "innovative-bhutan",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
" pr_Y_t|Y_(t-1) | \n",
" e_pr_Y_t|Y_(t-1) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 17.9 | \n",
" 17.074855 | \n",
" -2.474855 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 13.823183 | \n",
" 1.976817 | \n",
"
\n",
" \n",
" 1981-01-06 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 14.752232 | \n",
" 1.047768 | \n",
"
\n",
" \n",
" 1981-01-07 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.752232 | \n",
" 1.047768 | \n",
"
\n",
" \n",
" 1981-01-08 | \n",
" 17.4 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.752232 | \n",
" 2.647768 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-17 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.4 | \n",
" 13.048976 | \n",
" 0.851024 | \n",
"
\n",
" \n",
" 1990-12-18 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.281238 | \n",
" 3.918762 | \n",
"
\n",
" \n",
" 1990-12-19 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 15.836123 | \n",
" -1.136123 | \n",
"
\n",
" \n",
" 1990-12-20 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.900604 | \n",
" 1.499396 | \n",
"
\n",
" \n",
" 1990-12-21 | \n",
" 13.1 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 14.442549 | \n",
" -1.342549 | \n",
"
\n",
" \n",
"
\n",
"
3637 rows × 5 columns
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2) pr_Y_t|Y_(t-1) e_pr_Y_t|Y_(t-1)\n",
"Date \n",
"1981-01-04 14.6 18.8 17.9 17.074855 -2.474855\n",
"1981-01-05 15.8 14.6 18.8 13.823183 1.976817\n",
"1981-01-06 15.8 15.8 14.6 14.752232 1.047768\n",
"1981-01-07 15.8 15.8 15.8 14.752232 1.047768\n",
"1981-01-08 17.4 15.8 15.8 14.752232 2.647768\n",
"... ... ... ... ... ...\n",
"1990-12-17 13.9 13.6 13.4 13.048976 0.851024\n",
"1990-12-18 17.2 13.9 13.6 13.281238 3.918762\n",
"1990-12-19 14.7 17.2 13.9 15.836123 -1.136123\n",
"1990-12-20 15.4 14.7 17.2 13.900604 1.499396\n",
"1990-12-21 13.1 15.4 14.7 14.442549 -1.342549\n",
"\n",
"[3637 rows x 5 columns]"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_set"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "weekly-creativity",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression()"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X = training_set[['Y_(t-1)']]\n",
"y = training_set['Y_(t-2)']\n",
"model.fit(X,y)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "standing-ending",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0.77492437])"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.coef_"
]
},
{
"cell_type": "markdown",
"id": "nervous-essay",
"metadata": {},
"source": [
"$$Y_{t-2} = A_2 + B_2 Y_{t−1} + (\\epsilon_2 )_{t-2}$$\n",
"$$\\hat y_{t-1} = a_2 + b_2 y_{t−1}$$"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "promotional-yemen",
"metadata": {},
"outputs": [],
"source": [
"training_set['pr_Y_(t-2)|Y_(t-1)'] = model.predict(X)\n",
"training_set['e_pr_Y_(t-2)|Y_(t-1)'] = training_set['Y_(t-2)'] - training_set['pr_Y_(t-2)|Y_(t-1)']"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "mediterranean-mailman",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Y_t | \n",
" Y_(t-1) | \n",
" Y_(t-2) | \n",
" pr_Y_t|Y_(t-1) | \n",
" e_pr_Y_t|Y_(t-1) | \n",
" pr_Y_(t-2)|Y_(t-1) | \n",
" e_pr_Y_(t-2)|Y_(t-1) | \n",
"
\n",
" \n",
" Date | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1981-01-04 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 17.9 | \n",
" 17.074855 | \n",
" -2.474855 | \n",
" 17.082581 | \n",
" 0.817419 | \n",
"
\n",
" \n",
" 1981-01-05 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 18.8 | \n",
" 13.823183 | \n",
" 1.976817 | \n",
" 13.827899 | \n",
" 4.972101 | \n",
"
\n",
" \n",
" 1981-01-06 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.6 | \n",
" 14.752232 | \n",
" 1.047768 | \n",
" 14.757808 | \n",
" -0.157808 | \n",
"
\n",
" \n",
" 1981-01-07 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.752232 | \n",
" 1.047768 | \n",
" 14.757808 | \n",
" 1.042192 | \n",
"
\n",
" \n",
" 1981-01-08 | \n",
" 17.4 | \n",
" 15.8 | \n",
" 15.8 | \n",
" 14.752232 | \n",
" 2.647768 | \n",
" 14.757808 | \n",
" 1.042192 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1990-12-17 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.4 | \n",
" 13.048976 | \n",
" 0.851024 | \n",
" 13.052974 | \n",
" 0.347026 | \n",
"
\n",
" \n",
" 1990-12-18 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 13.6 | \n",
" 13.281238 | \n",
" 3.918762 | \n",
" 13.285452 | \n",
" 0.314548 | \n",
"
\n",
" \n",
" 1990-12-19 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.9 | \n",
" 15.836123 | \n",
" -1.136123 | \n",
" 15.842702 | \n",
" -1.942702 | \n",
"
\n",
" \n",
" 1990-12-20 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 17.2 | \n",
" 13.900604 | \n",
" 1.499396 | \n",
" 13.905391 | \n",
" 3.294609 | \n",
"
\n",
" \n",
" 1990-12-21 | \n",
" 13.1 | \n",
" 15.4 | \n",
" 14.7 | \n",
" 14.442549 | \n",
" -1.342549 | \n",
" 14.447838 | \n",
" 0.252162 | \n",
"
\n",
" \n",
"
\n",
"
3637 rows × 7 columns
\n",
"
"
],
"text/plain": [
" Y_t Y_(t-1) Y_(t-2) pr_Y_t|Y_(t-1) e_pr_Y_t|Y_(t-1) \\\n",
"Date \n",
"1981-01-04 14.6 18.8 17.9 17.074855 -2.474855 \n",
"1981-01-05 15.8 14.6 18.8 13.823183 1.976817 \n",
"1981-01-06 15.8 15.8 14.6 14.752232 1.047768 \n",
"1981-01-07 15.8 15.8 15.8 14.752232 1.047768 \n",
"1981-01-08 17.4 15.8 15.8 14.752232 2.647768 \n",
"... ... ... ... ... ... \n",
"1990-12-17 13.9 13.6 13.4 13.048976 0.851024 \n",
"1990-12-18 17.2 13.9 13.6 13.281238 3.918762 \n",
"1990-12-19 14.7 17.2 13.9 15.836123 -1.136123 \n",
"1990-12-20 15.4 14.7 17.2 13.900604 1.499396 \n",
"1990-12-21 13.1 15.4 14.7 14.442549 -1.342549 \n",
"\n",
" pr_Y_(t-2)|Y_(t-1) e_pr_Y_(t-2)|Y_(t-1) \n",
"Date \n",
"1981-01-04 17.082581 0.817419 \n",
"1981-01-05 13.827899 4.972101 \n",
"1981-01-06 14.757808 -0.157808 \n",
"1981-01-07 14.757808 1.042192 \n",
"1981-01-08 14.757808 1.042192 \n",
"... ... ... \n",
"1990-12-17 13.052974 0.347026 \n",
"1990-12-18 13.285452 0.314548 \n",
"1990-12-19 15.842702 -1.942702 \n",
"1990-12-20 13.905391 3.294609 \n",
"1990-12-21 14.447838 0.252162 \n",
"\n",
"[3637 rows x 7 columns]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_set"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "shared-things",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" e_pr_Y_t|Y_(t-1) | \n",
" e_pr_Y_(t-2)|Y_(t-1) | \n",
"
\n",
" \n",
" \n",
" \n",
" e_pr_Y_t|Y_(t-1) | \n",
" 1.000000 | \n",
" 0.076397 | \n",
"
\n",
" \n",
" e_pr_Y_(t-2)|Y_(t-1) | \n",
" 0.076397 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" e_pr_Y_t|Y_(t-1) e_pr_Y_(t-2)|Y_(t-1)\n",
"e_pr_Y_t|Y_(t-1) 1.000000 0.076397\n",
"e_pr_Y_(t-2)|Y_(t-1) 0.076397 1.000000"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_set[['e_pr_Y_t|Y_(t-1)', 'e_pr_Y_(t-2)|Y_(t-1)']].corr()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "early-macro",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1. 0.77454064 0.07667323 0.18903945 0.15209657 0.12980496\n",
" 0.11015613 0.10214422 0.07452041 0.07049043 0.03490694]\n"
]
}
],
"source": [
"from statsmodels.tsa.stattools import pacf\n",
"print(pacf(dataset['Y_t'][:3640], nlags=10))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "finished-hawaii",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "moderate-frederick",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "automatic-hamburg",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}