{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#from sklearn.datasets import load_boston\n", "from sklearn.linear_model import LinearRegression\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Διάνυσμα με 256 στοιχεία με τιμές από το 0 μέχρι το 100 (από ομοιόμορφη κατανομή)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x = 100 * np.random.rand(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Δημιουργία των δεδομένων χρησιμοποιώντας τη διαδικασία\n", "$$ y = A + B x + \\epsilon$$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "A = 10\n", "B = 4\n", "sigma_epsilon = 10" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "y = B * x + sigma_epsilon * np.random.randn(10) + A" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "dataset = pd.DataFrame()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "dataset['x'] = x\n", "dataset['y'] = y" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | x | \n", "y | \n", "
---|---|---|
0 | \n", "10.568555 | \n", "39.818205 | \n", "
1 | \n", "27.653339 | \n", "129.680680 | \n", "
2 | \n", "5.030525 | \n", "39.228481 | \n", "
3 | \n", "28.863857 | \n", "129.151640 | \n", "
4 | \n", "71.290622 | \n", "293.830941 | \n", "
5 | \n", "21.350306 | \n", "87.861720 | \n", "
6 | \n", "89.176592 | \n", "380.298711 | \n", "
7 | \n", "28.008078 | \n", "111.512206 | \n", "
8 | \n", "47.077837 | \n", "205.019795 | \n", "
9 | \n", "55.232391 | \n", "242.248821 | \n", "