{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Δημιουργία τυχαίου δείγματος 1024 στοιχείων από την $\\mathcal N (2,5^2)$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "dataset = pd.DataFrame(5*np.random.randn(1024)+2, columns=['x'])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
x
0-2.488147
16.570618
25.296783
3-0.793945
4-3.796571
\n", "
" ], "text/plain": [ " x\n", "0 -2.488147\n", "1 6.570618\n", "2 5.296783\n", "3 -0.793945\n", "4 -3.796571" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Υπολογισμός του συντελεστή ασυμμετρίας Fisher-Pearson" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$G_1 = \\frac{N^2}{(N-1)(N-2)}\\frac{\\frac{1}{N}\\sum_{n=1}^N(x_n-\\bar{X})^3}{s^3} $$" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x 0.023114\n", "dtype: float64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.skew()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Με τη len() λαμβάνουμε πόσα στοιχεία έχει το σύνολο δεδομένων" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "N = len(dataset)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Υπολογισμός του $\\sum_{n=1}^N(x_n-\\bar{X})^3$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x 3144.619736\n", "dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "((dataset - dataset.mean())**3).sum()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "((dataset - dataset.mean())**3).sum()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "sum3 = ((dataset - dataset.mean())**3).sum()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "s = dataset.std()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "G1 = N**2 / ((N-1)*(N-2)) * (1/N) * sum3 / s**3" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x 0.023114\n", "dtype: float64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "G1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Υπογογισμός του μέτρου κύρτωσης" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\mathrm{kurt} = \\frac{\\frac{1}{N}\\sum_{n=1}^N(x_n-\\bar{X})^4}{s^4}-3$$" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x 0.149248\n", "dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.kurt()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Άσκηση : Υπολογισμός του $\\sum_{n=1}^N(x_n-\\bar{X})^4$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sum4 = ((dataset-dataset.mean())**4).sum()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sum4" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kurt = (1/N * sum4)/s**4 - 3" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kurt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Άσκηση : Υπολογίστε τη μέση τιμή, τη διάμεσο, τα τεταρτημόρια για το dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Άσκηση : Δημιουργήστε το Box-and-Whisker plot για το dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset.plot.box()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## scipy.stats" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import scipy.stats as st" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### z-scores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$z = \\frac{x-\\bar{X}}{s}$$" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "x1 = 1.0" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "z1 = (x1 - dataset.mean())/dataset.std()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x -0.188914\n", "dtype: float64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Υπολογισμός του $P(Z \\leq z_1)$ με την scipy.stats" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "P1 = st.norm.cdf(z1)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.42507998])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "P1" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.7217573815286908" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z1 = -8/9\n", "z2 = 4/3\n", "P1 = st.norm.cdf(z1)\n", "P2 = st.norm.cdf(z2)\n", "P2-P1" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "z1 = -1.602" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "P1 = st.norm.cdf(z1)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.054577804746102826" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "P1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Άσκηση : Επιλύστε με χρήση των pandas και scipy.stats\n", "Σε ένα δημοψήφισμα με απάντηση ΝΑΙ / ΟΧΙ, το ΟΧΙ συγκέντρωσε το 60% των συνολικών ψήφων. Ποιά η πιθανότητα σε ένα τύχαιο δείγμα 500 ψηφοφόρων το ΝΑΙ να συγκεντρώνει τουλάχιστον το 50%;" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p = 0.6" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sigma_p_hat = (0.6*(1-0.6)/500)**(1/2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "z = (0.5-p)/sigma_p_hat" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "z" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "st.norm.cdf(z)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.16" } }, "nbformat": 4, "nbformat_minor": 4 }