{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Τυχαίο δείγμα 300 επιβατών του Τιτανικού" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "dataset = pd.read_csv(\"./titanic_300.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Με την head() λαμβάνουμε τα 5 πρώτα στοιχεία (preview)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassNameSexAgeFare
003Braund, Mr. Owen Harrismale22.07.2500
111Cumings, Mrs. John Bradley (Florence Briggs Th...female38.071.2833
213Heikkinen, Miss. Lainafemale26.07.9250
311Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.053.1000
403Allen, Mr. William Henrymale35.08.0500
\n", "
" ], "text/plain": [ " Survived Pclass Name \\\n", "0 0 3 Braund, Mr. Owen Harris \n", "1 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", "2 1 3 Heikkinen, Miss. Laina \n", "3 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", "4 0 3 Allen, Mr. William Henry \n", "\n", " Sex Age Fare \n", "0 male 22.0 7.2500 \n", "1 female 38.0 71.2833 \n", "2 female 26.0 7.9250 \n", "3 female 35.0 53.1000 \n", "4 male 35.0 8.0500 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Με την tail() λαμβάνουμε τα 5 τελευταία στοιχεία (preview)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SurvivedPclassNameSexAgeFare
29511Harder, Mr. George Achillesmale25.055.4417
29603Wiklund, Mr. Jakob Alfredmale18.06.4958
29703Beavan, Mr. William Thomasmale19.08.0500
29801Ringhini, Mr. Santemale22.0135.6333
29903Palsson, Miss. Stina Violafemale3.021.0750
\n", "
" ], "text/plain": [ " Survived Pclass Name Sex Age Fare\n", "295 1 1 Harder, Mr. George Achilles male 25.0 55.4417\n", "296 0 3 Wiklund, Mr. Jakob Alfred male 18.0 6.4958\n", "297 0 3 Beavan, Mr. William Thomas male 19.0 8.0500\n", "298 0 1 Ringhini, Mr. Sante male 22.0 135.6333\n", "299 0 3 Palsson, Miss. Stina Viola female 3.0 21.0750" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Εμφάνιση τυχαίου στοιχείου του δείγματος" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Survived 1\n", "Pclass 2\n", "Name Brown, Miss. Amelia \"Mildred\"\n", "Sex female\n", "Age 24.0\n", "Fare 13.0\n", "Name: 278, dtype: object" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.iloc[np.random.randint(300)]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Survived 1\n", "Pclass 2\n", "Name Hosono, Mr. Masabumi\n", "Sex male\n", "Age 42.0\n", "Fare 13.0\n", "Name: 232, dtype: object" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset.iloc[232]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ιστόγραμμα των ηλικίων θεωρώντας Κ ηλικιακές κλάσεις (από τον κανόνα του Sturges)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 22.0\n", "1 38.0\n", "2 26.0\n", "3 35.0\n", "4 35.0\n", " ... \n", "295 25.0\n", "296 18.0\n", "297 19.0\n", "298 22.0\n", "299 3.0\n", "Name: Age, Length: 300, dtype: float64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset['Age']" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAStUlEQVR4nO3dYYwc5X3H8e8/ODTUl9oQ6MoyqKYCgShXnHhFQETRHYSIhCjwAqEgFJnK1b1JIqI6akwrVYrUqo4qkiI1qmqFNK6UclAHagRKUupyjVo1JDaQHOBQE2IarmA3qW1yFCV1+u+LnSOX9cGO7Z3becj3I51259nZ3d+t536efW5nLjITSVJ53jTqAJKkE2OBS1KhLHBJKpQFLkmFssAlqVArlvPJzjzzzFy3bl2tdV9++WVWrlzZbKAhKilvSVmhrLxmbU5JeYeddc+ePT/MzLOOuSEzl+1rw4YNWdfDDz9ce902KClvSVkzy8pr1uaUlHfYWYHduUSnOoUiSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKtTAAo+ICyLi8UVfL0XExyPijIh4KCL2VZenL0dgSVLPwEPpM/NpYD1ARJwCzAH3AVuAXZm5NSK2VMufbC6qlsu6LQ+O7Ln3b712ZM8tleZ4p1CuAr6Xmc8B1wHbq/HtwPVDzCVJGuB4C/xDwF3V9U5mvlBdfxHoDC2VJGmgyJp/EzMiTgX+E/itzDwQEYczc/Wi2w9l5jHz4BExBUwBdDqdDdPT07Web35+nrGxsVrrtkFJeQdlnZ07soxpftH42lXHjL2RXts2KSkrlJV32FknJyf3ZGa3f/x4Tif7PuDRzDxQLR+IiDWZ+UJErAEOLnWnzNwGbAPodrs5MTFR68lmZmaou24blJR3UNZbRjkHfvPEMWNvpNe2TUrKCmXlXa6sxzOFchM/nz4BuB/YWF3fCOwcVihJ0mC1CjwiVgJXA/cuGt4KXB0R+4D3VMuSpGVSawolM18G3tY39iN6n0qRJI2AR2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFapWgUfE6ojYERHfjYi9EXF5RJwREQ9FxL7q8vSmw0qSfq7uHvgdwFcz80LgEmAvsAXYlZnnA7uqZUnSMhlY4BGxCng3cCdAZv40Mw8D1wHbq9W2A9c3E1GStJTIzNdfIWI9sA14it7e9x7gVmAuM1dX6wRwaGG57/5TwBRAp9PZMD09XSvY/Pw8Y2NjNb+N0Ssp76Css3NHljHNLxpfu+qYsTfSa9smJWWFsvIOO+vk5OSezOz2j9cp8C7wDeCKzHwkIu4AXgI+triwI+JQZr7uPHi3283du3fXCjwzM8PExEStddugpLyDsq7b8uDyhemzf+u1x4y9kV7bNikpK5SVd9hZI2LJAq8zB/488HxmPlIt7wDeARyIiDXVg68BDg4rrCRpsIEFnpkvAj+IiAuqoavoTafcD2ysxjYCOxtJKEla0oqa630M+FJEnAo8C/wOvfK/JyI2Ac8BNzYTUZK0lFoFnpmPA8fMv9DbG5ckjYBHYkpSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWqezIraVksdS7yzeNHuaXhc5QvdR5yqe3cA5ekQlngklQop1BarKk/bbYcUxKSmuceuCQVygKXpEJZ4JJUKAtckgplgUtSoWp9CiUi9gM/Bn4GHM3MbkScAdwNrAP2Azdm5qFmYkqS+h3PHvhkZq7PzIW/Tr8F2JWZ5wO7qmVJ0jI5mSmU64Dt1fXtwPUnnUaSVFtk5uCVIr4PHAIS+KvM3BYRhzNzdXV7AIcWlvvuOwVMAXQ6nQ3T09O1gs3PzzM2Nlbz2xi9JvLOzh0Z6uMt6JwGB15p5KEbsRx5x9euGsrjlLTdlpQVyso77KyTk5N7Fs1+vKrukZjvysy5iPh14KGI+O7iGzMzI2LJ/wkycxuwDaDb7ebExEStJ5yZmaHuum3QRN6mjpbcPH6U22fLOQh3OfLuv3liKI9T0nZbUlYoK+9yZa01hZKZc9XlQeA+4FLgQESsAaguDzYVUpJ0rIEFHhErI+KtC9eB9wJPAPcDG6vVNgI7mwopSTpWnfelHeC+3jQ3K4C/zcyvRsS3gHsiYhPwHHBjczElSf0GFnhmPgtcssT4j4CrmgglSRrMIzElqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSo2gUeEadExGMR8UC1fG5EPBIRz0TE3RFxanMxJUn9jmcP/FZg76LlTwOfzczzgEPApmEGkyS9vloFHhFnA9cCn6+WA7gS2FGtsh24voF8kqTXEJk5eKWIHcCfAm8FPgHcAnyj2vsmIs4BvpKZFy9x3ylgCqDT6WyYnp6uFWx+fp6xsbF630ULNJF3du7IUB9vQec0OPBKIw/diOXIO7521VAep6TttqSsUFbeYWednJzck5nd/vEVg+4YER8ADmbmnoiYON4nzsxtwDaAbrebExP1HmJmZoa667ZBE3lv2fLgUB9vwebxo9w+O/CfvjWWI+/+myeG8jglbbclZYWy8i5X1jo/FVcAH4yI9wNvAX4NuANYHRErMvMocDYw11xMSVK/gQWembcBtwFUe+CfyMybI+LvgBuAaWAjsLO5mFKz1g3p3c7m8aPH/c5p/9Zrh/Lc+uVzMp8D/yTwexHxDPA24M7hRJIk1XFcE4uZOQPMVNefBS4dfiRJUh0eiSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEINLPCIeEtEfDMivh0RT0bEp6rxcyPikYh4JiLujohTm48rSVpQZw/8J8CVmXkJsB64JiIuAz4NfDYzzwMOAZsaSylJOsbAAs+e+WrxzdVXAlcCO6rx7cD1TQSUJC0tMnPwShGnAHuA84DPAX8GfKPa+yYizgG+kpkXL3HfKWAKoNPpbJienq4VbH5+nrGxsZrfxug1kXd27shQH29B5zQ48EojD92IkvKeSNbxtauaCTOAP2PNGXbWycnJPZnZ7R9fUefOmfkzYH1ErAbuAy6s+8SZuQ3YBtDtdnNiYqLW/WZmZqi7bhs0kfeWLQ8O9fEWbB4/yu2ztf7pW6GkvCeSdf/NE82EGcCfseYsV9bj+hRKZh4GHgYuB1ZHxMKWejYwN9xokqTXU+dTKGdVe95ExGnA1cBeekV+Q7XaRmBnQxklSUuo815vDbC9mgd/E3BPZj4QEU8B0xHxx8BjwJ0N5pQk9RlY4Jn5HeDtS4w/C1zaRChJ0mAeiSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQpVxlnxgXUN/3GCQ/VuvHcnzStIg7oFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSogQUeEedExMMR8VREPBkRt1bjZ0TEQxGxr7o8vfm4kqQFdfbAjwKbM/Mi4DLgIxFxEbAF2JWZ5wO7qmVJ0jIZWOCZ+UJmPlpd/zGwF1gLXAdsr1bbDlzfUEZJ0hIiM+uvHLEO+DpwMfAfmbm6Gg/g0MJy332mgCmATqezYXp6utZzzc/PMzY29ury7NyR2jmHaXztqlrr9ecdhqa+585pcOCVRh66ESXlPZGsdbexYWtim21SSXmHnXVycnJPZnb7x2sXeESMAf8M/Elm3hsRhxcXdkQcyszXnQfvdru5e/fuWs83MzPDxMTEq8ttPxdKf95haOp73jx+lNtnizkNTlF5TyTrqM6308Q226SS8g47a0QsWeC1PoUSEW8Gvgx8KTPvrYYPRMSa6vY1wMFhhZUkDTZwV6GaHrkT2JuZn1l00/3ARmBrdbmzkYTSG9yo3l1+8ZqVI3leDU+d93pXAB8GZiPi8WrsD+gV9z0RsQl4DrixkYSSpCUNLPDM/BcgXuPmq4YbR5JUl0diSlKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQZZwlX9LQzc4d4ZaW/6EUvT73wCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKtTAAo+IL0TEwYh4YtHYGRHxUETsqy5PbzamJKlfnQN5vgj8BfA3i8a2ALsyc2tEbKmWPzn8eKO3ruaBDpvHj47soAhJv5wG7oFn5teB/+4bvg7YXl3fDlw/3FiSpEFOdA68k5kvVNdfBDpDyiNJqikyc/BKEeuABzLz4mr5cGauXnT7ocxcch48IqaAKYBOp7Nhenq6VrD5+XnGxsZeXZ6dO1LrfqPSOQ0OvDLqFPWUlBXKymvW5gwj7/jaVcMJM0B/f52sycnJPZnZ7R8/0ZNZHYiINZn5QkSsAQ6+1oqZuQ3YBtDtdnNiYqLWE8zMzLB43bbPL28eP8rts2WcG6ykrFBWXrM2Zxh59988MZwwA/T3V1NOdArlfmBjdX0jsHM4cSRJddX5GOFdwL8BF0TE8xGxCdgKXB0R+4D3VMuSpGU08P1IZt70GjddNeQskqTj4JGYklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUqHLOZCNJJ6nuH2g5Wf1/4GX/1msbeR73wCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEKdVIFHxDUR8XREPBMRW4YVSpI02AkXeEScAnwOeB9wEXBTRFw0rGCSpNd3MnvglwLPZOazmflTYBq4bjixJEmDRGae2B0jbgCuyczfrZY/DLwzMz/at94UMFUtXgA8XfMpzgR+eELhRqOkvCVlhbLymrU5JeUddtbfyMyz+gcbPx94Zm4Dth3v/SJid2Z2G4jUiJLylpQVyspr1uaUlHe5sp7MFMoccM6i5bOrMUnSMjiZAv8WcH5EnBsRpwIfAu4fTixJ0iAnPIWSmUcj4qPA14BTgC9k5pNDS3YC0y4jVlLekrJCWXnN2pyS8i5L1hP+JaYkabQ8ElOSCmWBS1KhWlngbT9EPyK+EBEHI+KJRWNnRMRDEbGvujx9lBkXRMQ5EfFwRDwVEU9GxK3VeOvyRsRbIuKbEfHtKuunqvFzI+KRanu4u/qleStExCkR8VhEPFAttznr/oiYjYjHI2J3Nda67QAgIlZHxI6I+G5E7I2Iy1uc9YLqNV34eikiPr4ceVtX4IUcov9F4Jq+sS3Arsw8H9hVLbfBUWBzZl4EXAZ8pHo925j3J8CVmXkJsB64JiIuAz4NfDYzzwMOAZtGF/EYtwJ7Fy23OSvAZGauX/QZ5TZuBwB3AF/NzAuBS+i9xq3MmplPV6/pemAD8D/AfSxH3sxs1RdwOfC1Rcu3AbeNOtcSOdcBTyxafhpYU11fAzw96oyvkXsncHXb8wK/CjwKvJPeEW0rlto+Rpzx7OoH80rgASDamrXKsx84s2+sddsBsAr4PtWHLNqcdYns7wX+dbnytm4PHFgL/GDR8vPVWNt1MvOF6vqLQGeUYZYSEeuAtwOP0NK81ZTE48BB4CHge8DhzDxardKm7eHPgd8H/q9afhvtzQqQwD9ExJ7qFBfQzu3gXOC/gL+upqc+HxEraWfWfh8C7qquN563jQVevOz9l9uqz2dGxBjwZeDjmfnS4tvalDczf5a9t6Jn0zth2oWjTbS0iPgAcDAz94w6y3F4V2a+g9705Eci4t2Lb2zRdrACeAfwl5n5duBl+qYfWpT1VdXvOz4I/F3/bU3lbWOBl3qI/oGIWANQXR4ccZ5XRcSb6ZX3lzLz3mq4tXkBMvMw8DC9aYjVEbFw0FlbtocrgA9GxH56Z+K8kt68bRuzApCZc9XlQXpztJfSzu3geeD5zHykWt5Br9DbmHWx9wGPZuaBarnxvG0s8FIP0b8f2Fhd30hvrnnkIiKAO4G9mfmZRTe1Lm9EnBURq6vrp9Gbq99Lr8hvqFZrRdbMvC0zz87MdfS20X/KzJtpYVaAiFgZEW9duE5vrvYJWrgdZOaLwA8i4oJq6CrgKVqYtc9N/Hz6BJYj76gn/V/jFwHvB/6d3vznH446zxL57gJeAP6X3t7CJnrzn7uAfcA/AmeMOmeV9V303rp9B3i8+np/G/MCvw08VmV9Avijavw3gW8Cz9B7e/oro87al3sCeKDNWatc366+nlz4uWrjdlDlWg/srraFvwdOb2vWKu9K4EfAqkVjjef1UHpJKlQbp1AkSTVY4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQ/w8rLcMfgld/KgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "dataset[\"Age\"].hist(bins=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Απαρίθμηση των εμφανίσεων κάθε φύλου στο δείγμα" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "male 188\n", "female 112\n", "Name: Sex, dtype: int64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset[\"Sex\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADnCAYAAADGrxD1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVuElEQVR4nO3deZwcZZ3H8c+vu2cm4XCCHHKJtQaWLGQjyB05oiiijYggAlGUhUUQhHAEqSWIBSi2yiEicigCK4hBQSAW1wokJCGE0wSQM6YhXHIEOwFykMyzf1ShwzCT6Znprl9V9e/9evVrMpNJP9+B+fZTVV31lDjnMMbkR0E7gDGmsazUxuSMldqYnLFSG5MzVmpjcsZKbUzOWKmNyRkrtTE5Y6U2Jmes1MbkjJXamJyxUhuTM1ZqY3LGSm1MzlipjckZK7UxOWOlNiZnrNTG5IyV2picsVIbkzNWamNyxkptTM5YqRtMRMaJyJ+0c5jWZaU2Jmes1L0QEU9EnhCRK0TkKRG5WkQ+LSIzReRpEdk+fswSkYdF5B4R2byX51ldRH4tIvfF3/dFjZ/HtBYrdd82Bc4BRsWP8cDOwETgFOAJYBfn3NbAacBZvTzHJOBO59z2wCeBn4jI6glkNy2spB0gxeY75x4BEJHHgDucc05EHgE8oBO4UkQ2AxzQ1stz7AHsLSIT48+HAZsAjzc7vGldVuq+Lev2565un3cR/Xc7E7jLOfclEfGAqb08hwD7OeeebGLOXnl+uCawebfHBkQvKsOAjvgxrJeP7cBbwOs9Hn8HFgDPxR9fqFbKK5L7iUy9rNSD1wm8EP/5kD6+5zbgGBE5Jp7lt3bOPdyoAJ4fFoi2Gt4t7ijeW+Kh2Kyfv1/p+eEC4D7gXmAW8FC1Ul4+xHHNEFmpB+/HRJvfpwJhH99zJvBTYK6IFID5wF5DGdTzw48CnwP2JNpP19pHLxK9oHjAV+KvLfP88GGigt8LzKpWygtU0rUwsVvZppvnh8OJyrsnUZk31U00YC8QFfwm4I/VSnmxcp7cs1KnkOeHo4DPExV5F6J93TxYAkwBrgZuqVbK7yjnySUrdUrEB7bGA4cD2yjHScJC4A9EBZ9erZTtF7FBrNTKPD/cHvgmcCB6+8faFgDXAFdXK+W52mGyzkqtwPPDIvBl4HhgB+U4aTMN+F61Up6mHSSrrNQJ8vzwA0Sb18cAH1GOk3ZW7kGyUifA88N24FjgVKL3t039rNwDZKVuMs8P9yY6hzxrb0WljZW7TlbqJvH8cDRwHvBp7Sw5Mw04tVopz9AOklZW6gbz/HBt4AzgCKKzrkxzXA5MrFbKC7WDpI2VukE8PywBRwPfA9ZSjtMqXgGOq1bK12gHSRMrdQN4frgDcAXRBRUmebcAR9h55hFbJGGIPD88HpiOFVrT54BHPD/8mnaQNLCZepA8PxxBNDvbEkXp8nvgyFbe17ZSD0J8audkossOTfq8CHyjWin/WTuIBtv8HiDPD48DZmCFTrMNgVs9PzxSO4gGm6nrFG9uXw7so5vEDNC5wEnVSrlLO0hSrNR18PxwW6J9NU85ihmcG4CvVivlt7WDJMFK3Q/PDz9JdGF/q14WmRcPAF+oVsovawdpNtunXgXPDz8H3IwVOg+2BWbHp+/mmpW6D54f7kO02ZaXpYRMtOb6TM8P99AO0kxW6l54fngg0T50u3YW03AfAELPDw/VDtIstk/dg+eHhwCXYS94edcFjK9WypO1gzSalbobzw+/BVxIdGcNk3/LgXLeTlKxUsfic7jP1c5hEvcmMK5aKT+oHaRRrNSA54ffBi7QzmHUvAp8olopP60dpBFavtTx21ZTsAUNWl0VGFutlF/SDjJULV3q+D3LmURHRI2ZC+xarZRr2kGGomWP8Hp+uB7RDG2FNu8aA0zx/DDT5ya0ZKk9P2wDrsfO5TbvtwvRrYAyqyVLTbRk7ye0Q5jU2tfzw6O1QwxWy+1Te354EPBb7Rwm9ZYA21Qr5ce1gwxUS5Xa88MtgdnYBRqmPn8BdqhWysu1gwxEy2x+e364GnAdVmhTv62A72uHGKiWKTUQAJtrhzCZc2J8TX1mtMTmt+eHY4AHgZJ2FpNJzwNjqpXyG9pB6pH7mdrzQwEuwQptBm9jot+hTMh9qYnuabWjdgiTeft7fvgN7RD1yPXmt+eH6wOPAyOUo5h8WAxsnvbzw/M+U5+HFdo0zppk4Gh4bmdqzw8/C9yqncPkThfw8WqlPEc7SF9yOVN7fjgc+IV2DpNLBaLTjFMrl6UGTgE+qh3C5Nbunh/upR2iL7nb/I5vj/Mc0f6PMc3yKPCxNN7OJ48z9VFYoU3zjQa+oh2iN7maqeOL258F1tPOYlrCE8DoaqW8UjtId3mbqQ/BCm2SMwoYrx2ip9zM1J4fFoEngZHaWUxLmUd0QkpqZus8zdT7YYU2yRsJ7Kkdors8lfo72gFMyzpMO0B3udj89vxwdyBXt04xmfIOsHG1Un5FOwjkZ6Y+WTuAaWltwNe1Q7wr86X2/PA/gM9o5zAtLzWb4JkvNbC/dgBjgFGeH47VDgH5KPV+2gGMiaVits70gTLPD0cCz2jnMCb2JrBBtVJ+UzNE1mdqm6VNmqwBHKAdIuul3lc7gDE9HKodILOb354fbgQsAEQ7izHddAHraC4nnOWZel+s0CZ9CsCu2gGyyja9TVqp3tEjk6X2/HBdovsIG5NG4zQHz2SpgTJQ1A5hTB/GeH74Qa3Bs1pqu2G8STNBcb86q6XeQTuAMf1Q26/OXKk9P1wd2EI7hzH9GKc1cOZKDWyL7U+b9PtPrf3qLJZ6O+0AxtRBgN00Bs5iqT+mHcCYOm2jMWgWSz1aO4AxdfI0Bs1UqeNlgEdp5zCmTp7GoJkqNdFyrMO0QxhTp49oDJq1Um+pHcCYAdjQ88O2pAfNWqk97QDGDEAB2ERj0CxZSzuAMQPkJT2gldqY5kp8vzprpR6hHcCYAfKSHjBrpbaZ2mSNl/SAdZVaRA7r8XlRRL7XnEirZKU2WZPaA2W7i8jNIrKBiGwJ3Aus2cRcfRmhMKYxQ7FG0gOW6vkm59x4ETkAeAR4CxjvnJvZ1GS9s5naZE0636cWkc2ACcB1wLPAwSKyWjOD9cFKbbKmPekB6938ngKc5pw7guhysqeB+5uWqheeH3Zgp4ia7El8pq5r8xvY3jm3CMBFq/+fIyJTmherVyMSHs+YRkhtqYeLyHnARs65PUVkC2An4KnmRXuf5QmO1VJ+1nbB1L0K947RzpFHXchiSPZmHfWW+grgcmBS/PlTwGTgsiZk6suiBMdqGee0XTR17+Kscdo58qqAW5z8mPVZxzl3LdF9gnDOrQBWNi1VL6qV8kqiI++mQc4q/WrafsXp47Rz5FyiPYH6S/2WiKwNOAAR2RGoNS1V3zTGzKXTS1dMG1+6U2UNrRazLOkB6938PgG4CRgpIjOBdYEvNy1V32rAhgrj5soppavu/kbpdit0Ml5PesBVztQisp2IrO+ce4joraxTiF55bgeeTyBfTzZTD9HE0uTphxdvtvuQJSddpQYu4V9HnccSHSi7kOhw3qVNzNUXO1g2BMcWr59xdPHGnUXsFsAJWpj0gP1tfhedc++GOgC41Dl3HXCdiPylqcl6ZzP1IB1RnDLz+NIfxlqhE5e6mbooIu8Wf3fgzm5/V+/+eCNZqQfh0OIt9/ila3YUydyltnmQeKn7K+Y1wDQReQ1YAkwHEJFN0SmYbX4P0MHF2+/9buk324vYrYqUvJb0gKsstXPuByJyB7ABcHt8iihEM/wxzQ7Xi1cVxsysrxTvuu+M0hXbiKhsVZnI/KQH7Pd/tnPu3l6+luTpod09qjRu5nypMP3+H5V+uZVI8ucem/dIvCtZ28eaqx0gC/YqzHrw3LaLxogkf9mfeY+3UXjrN1OlrlbKz5H02fEZ89nCfQ9f0HbBFiJ0aGcxPENQc/1/W2NlqtQxm6378KnCQ3Mubvvp5iIM185iAIVNb7BS58auhTlzL2s7e6QIGivSmN5Zqes0RztA2owtPPrYlW0/+jeR5Be5M6v0sMagVuqM206eePzqtrM2FlFZ3dWs2iyNQbNY6sdQuEY1jbaWp5+c3H7GBiJ0amcx77OAoPaCxsCZK3W1Ul5CtPBhSxsj856+rj1YtyC2dltKqczSkMFSx1p6E3wLqc67of20tQriPqidxfTpHq2Bs1rqu7UDaNlcnps/pX3SmgVx62hnMatkM/UAhdoBNIyUF569uf1/hhfFraedxazSIpSOfENGS12tlJ8lOmDWMjx5acFt7Se3FcWtr53F9OtWgto7WoNnstSxm7UDJOXD8soLf24/SUrSZeuzZUPSN7p4jyyXuiU2wTfi1ZfubD9xZUm6NtbOYuqyEuUJJ8ulnonCBehJ2oDXX76r48RlbbIy8Xscm0GbSVBLfF2y7jJb6mqlvAL4o3aOZlmPN16d2nH82+2ywtPOYgbkJu0AmS117FrtAM2wNrXX7u44rtYhKz6qncUMiAOu1w6R9VLfRc6WOFqLRQtndExYOEze2VQ7ixmwaQS1xJcv6inTpY7vr6X+ytgonbz5j5kdE14ZLsv/XTuLGZRfaweAjJc6drl2gEZYk7dqMzuOfXE1WTZKO4sZlEXAH7RDQA5KXa2UZxMdCc+s1VmyeGbHsQvWkKVbaGcxg/Y7gtoS7RCQg1LHfqIdYLBWY+lbMzuOnf8BWTJaO4sZklRsekN+Sn0TSkvHDMVwlr09o2PC0yPkrTHaWcyQPERQm60d4l25KHW1UnbAOdo5BqKD5Uund0x44oOyeCvtLGbIKtoBustFqWP/C7yiHaIe7byzbHrHcY+uI4s+rp3FDNlTwHXaIbrLTamrlfJS4OfaOfrTxorlUzuOn7Oe/GNb7SymIX5CUOvSDtFdbkod+wXRXRFSqcjKFXe2n/DwhrJwe+0spiFeJNpCTJVclbpaKb9OSt+3LrJyxR3tE+//cOG1HbSzmIY5l6C2XDtET7kqdexcUrbaaIGulbe1n3yfV/j7TtpZTMM8D1ykHaI3uSt1tVL+G3Cxdo53CV1dt7T7925aeHGsdhbTUJMIaqnc1ctdqWOTgJe1Q4Bzf2qfdM/mhec/oZ3ENNSDwG+0Q/Qll6WuVso14ETdFM7d0H7ajC0Lz+6sm8M0wQkad7OsVy5LDVCtlH8L3KE1/u/bT5++VWHeLlrjm6a5nqCW6iWqc1vq2NFA4kcnf9v2/WnbFZ7aNelxTdMtBb6jHaI/uS51tVJ+EvhxkmNe2VaZOrb4192SHNMk5nSC2jztEP3JdaljPwD+lsRAl7adM3W34txxSYxlEvcQcLZ2iHrkvtTx6aPfbvY4P287f+oexQfHNXsco+Id4FCC2grtIPXIfakBqpXyLTRx2aNz234xda/i7HHNen6j7nSCWmZuytgSpY59i+gsoIb6YemX0/YtzhjX6Oc1qXEfKbu0sj8tU+pqpfwKsC+wrFHPeUbp8mkHle6yg2L59QZwAEEtVacd96dlSg1QrZTvJ5qxh+yU0lV3f730f1bo/HLA1whqVe0gA9VSpQaoVsqXM8QT8SeWJk8/vHiznViSb2cS1DJ5E8aWK3VsAoNcgXRC8boZRxdv3FkEaXAmkx63AadrhxgscS61p7A2leeH6xOdmF/37WGPKt4486TS5J1EWvbFsBU8C2xDUHtdO8hgtewvZ7VSfhn4MnWeRnpY8eZ7TipN3tEKnWtvAOUsFxpauNQA1Up5FnBsf9/39eJts04tXbW9CMUEYhkdS4G9CWqPaQcZqpYuNUC1Ur4EuKCvvz+weOfs00tXbitCKcFYJlkrgYMIajO0gzRCy5c6NgG4tOcX9yvcff8PS7/aWoQ2hUwmOUcR1G7QDtEoVmr+eTOAI+l265QvFO554Oy2i8eI0K6XzCTgNILa+17Qs6xlj373xvPDAnD5noXZoy9qO38LEYZpZzJNNYmgdpZ2iEazUvfg+WHhqY6DL2mXlf+tncU01XEEtfO1QzSDlbo3QacAF9KgU0pNqnQB38rbJnd3VupVCTrPAv5HO4ZpmJXAIQS1q7SDNJOVuj9B538Bl4AdAc+4RcCBBLVbtIM0m5W6HkHnbkR3NlxbO4oZlGeITix5XDtIEuwtrXoEtWnAjsCT2lHMgN0B7NAqhQYrdf2C2jNExb5NO4qp24XAngS1hdpBkmSb3wMVHRmfSLRKqe1np9Mi4Oi8HxDri5V6sILObYFrgE21o5j3uIdoxZL52kG02Ob3YAW1B4CtSfGN0lrMSiAAdm3lQoPN1I0RdB4AnA98SDtKi5oHHExQm6UdJA1spm6EoDYZGEV0X2x7lUzOMqJlh0Zbof/FZupGCzp3JCr3x7Sj5NytwDHxuxKmGyt1MwSdRaJrtL8LjNANkzsLiC7GaNodV7LOSt1MQedawElESyatrpwm614nuoPpzwlqb2uHSTMrdRKCzg8Bk4AjwBZdGKA3gHOAnxHUFmuHyQIrdZKCzk2AU4GDwRZg6Mci4DzgPIJaTTtMllipNQSd6wDfBI4CNlJOkzbziRaCvIygtkg7TBZZqTUFnSVgP6KDajspp9HUBdxOdDukPxHUupTzZJqVOi2Czq2A8cCBwId1wyTmKWAy8Oss3ogurazUaRNdMLIzcBCwP7CObqCGmwdcC1xLUPuLcpZcslKnWbR5Pg74TPzYCjJ3Y76VwAPAn4HrCWoPKefJPSt1lkQH2HYnKvjugKeap3cOmAPcGT+mD+WAl4gcS7QA5EPOua82JuJ7nj8A3nTOnd3o59Zipc6yoHNdYFtgG6LTUscQXQqa1Dn9bwOPAo8Ac+PHHILaG40aQESeAD7tnHu+Uc/Z4/kDrNQm1YLO4cBHgE2IDrh1/7ge0ZltqwOrxR97vgC8Q3SzuCXxx9eAF3p5zAfmNfNItYhcDBxKtIzU74CRwGiixSkC59yNInIIsE/8s2wGnE10gs/BRBd8fN45t1BEDid6G7GdaM2yg51zb3cvtYiMJFotZV2iF6zDnXNPNOvnaxYrdasLOocRnQizHFiatreTRKRKtDVyAvBX59xVIjICuI/oevb9iU7o2Zro53gGONk5d7GInAc865z7qYis7Zx7PX7O7wN/d85d0KPUdwBHOueeFpEdgB865z6V6A/cAHYnx1YX1JYSzchptwewt4hMjD8fRrT1AXCXc24xsFhEasCU+OuPEO2SAIyOyzwCWIMea82JyBrAWOD3Iv88FtnRhJ+j6azUJisE2M85954VXeMZdVm3L3V1+7yLf/2OXwHs45ybE2+yj+vx/AXgH865rRqaWoEtkmCy4jbgGImnURHZeoD/fk3gJRFpA953FN05twiYLyL7x88vIpLJa+Kt1CYrziQ6QDZXRB6LPx+I7wKzgZlAXwe/vgocJiJzgMeALw4yqyo7UGZMzthMbUzOWKmNyRkrtTE5Y6U2Jmes1MbkjJXamJyxUhuTM1ZqY3LGSm1MzlipjckZK7UxOWOlNiZnrNTG5IyV2picsVIbkzNWamNyxkptTM5YqY3JGSu1MTljpTYmZ6zUxuSMldqYnLFSG5Mz/w/mEb4ycsyGZwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset[\"Sex\"].value_counts().plot.pie()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "male 188\n", "female 112\n", "Name: Sex, dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset[\"Sex\"].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Απαρίθμηση των επιζόντων και των θυμάτων (0-θύμα, 1-επιζών) στο δείγμα" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 186\n", "1 114\n", "Name: Survived, dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset[\"Survived\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADnCAYAAADGrxD1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU+ElEQVR4nO3deZQcZbnH8e/TPQtbGIELBtmKLUSBGAVBQTCg94i2V1yuVzZBQe/VQyCogKUIliLSqCBuIFtURFkUlaVYlCUhCwFMWAMECOmQsCUh0CQkIcnkvX9UB8YhmemZ6a6n6u3nc04fmQnM+/Oc/Oat9X3FOYcxxh8F7QDGmMayUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUhvjGSu1MZ6xUqdERA4RkVki8pSIhNp5jL/ElghuPhEpAk8A/wnMB+4DDnfOPaoazHjJZup07AM85Zx72jm3ErgKOFQ5k/GUlTod2wDzenw9v/Y9YxrOSm2MZ6zU6XgW2K7H19vWvmdMw9mFshSISBvJhbIPk5T5PuAI59zMZo0ZhPFGwE49PjsDOwAbAsV1fNp6fb0SeLHX5wWgAjwNPFcpl+wvTwZZqVMiIh8HzicpzHjn3FmN+LlBGO9GciFuZ94s707A8Eb8/D6sAOYCs0l+SU0CplXKpdeaPK7ph5U6Z4Iw3pZkxj+49tlWN9G/WQ3cD0wmKfnkSrm0UDdS67FSZ1wQxlsAB/FmkUfoJhqwWbxZ8psr5dIC5Tzes1JnUBDGOwFHA58ERgOiGqhxVgO3ApcD11XKpdeV83jJSp0RQRgPA/4HOAb4IP4UeX1eAa4BLq+US1OUs3jFSq0sCOO9gLEkhd5IOY6Wp4A/kBS8opwl96zUCoIw7iQp8fHAvspxssQBdwHnVcql67XD5JWVOkVBGG8AnACcDGylHCfr7gVOr5RL/9AOkjdW6hQEYVwAvgCcyb8/WWb6N4mk3BO1g+SFlbrJgjA+BDgHGKWdJeduB75bKZemaQfJOit1kwRh/F7gxyT3l03j3EQyc8/QDpJVVuoGC8I4AM4CDsf/21JaHMk76ePsibW3slI3SBDGbcD3gFOBDuU4reIlkmL/UTtIllipGyAI452BP5G8WGHSFwNfrZRL87WDZIG9Tz1EQRh/EXgAK7SmEjAzCOOjtYNkgc3UgxSE8duAi0geIjHZcRXwtUq59Ip2EC1W6kEIwvhAkscat9fOYtbpGeDoVr23baUegNrFsAj4NnbqknVrgO9UyqVztIOkzUpdpyCMhwN/x57VzpvfAGMr5VK3dpC0WKnrULu6/U9gR+0sZlBi4POtstSSlbofQRiPBm4B3q4cxQzNdKBUKZde1A7SbHZe2IfaBbEJWKF9sBcwLQjjkdpBms1KvR5BGB9KsvROl3YW0zABMLX2y9pbVup1CML4WOBaYAPtLKbhNgP+EYTx4dpBmsVK3UsQxqcCl5Gsz2381An8sfbL2zt2oayHIIzLwLe0c5jUrAY+VSmXYu0gjWSlrgnC+FtAWTuHSd0y4OBKuXSPdpBGsVIDQRgfRbIWtb3/3JoWAftXyqUntIM0QsuXOgjjj5CsptGuncWoqgAfqJRLL2gHGaqWLnUQxu8mWdhumHYWkwkPAAdWyqUl2kGGomWvfgdhvCVwPVZo86bRwF+DMM71yjUtWeogjNtJ7kPbq5Omt48AvwvCOLfXV1qy1MCvgQO0Q5jMOhw4RTvEYLXcOXUQxl8DLtDOYTJvJbBPpVx6UDvIQLVUqYMwHgE8iD3+aerzCLB33rbcbZnD79rWN+OxQpv67QH8SDvEQLVMqYETgf21Q5jc+XoQxgdrhxiIljj8rq1c8hCtu/+zGZp5wKi8rFDq/UxduzUxHiu0GbztSO6Y5IL3pSbZ2N3rl+JNKo4Iwvjz2iHq4fXhdxDGOwIPAxtrZzFeeBnYo1IuPacdpC/eztS1w+7LsEKbxtmMHFwN97bUwLHAQdohjHe+UFthNrO8LHXtgfxIO4fxUgE4VztEX7wsNfBlYFvtEMZbBwdhXNIOsT7eXSirzdKzsVKb5ppJcu96jXaQ3nycqW2WNmnYnYxuY+zVTG2ztEnZYyS3uDI1W/s2U9ssbdL0TuAw7RC9eTNT2yxtlMwCds/SVrk+zdQ2SxsNuwH/pR2iJy9KXZulQ+0cpmUdpx2gJy9KDXyK5E0aYzR8LAjj4doh1vKl1EdqBzAtrQgcrR1irdyXOgjjzYGPaecwLe9L2gHWyn2pgc9hW+YYfSODMN5POwT4UWo79DZZkYn9rnN9nzoI4+1JNjbL7W4KxitLgK0r5dJrmiHyPlMfgRXaZMcwktNBVXkvtR16m6xRv2CW28PvIIxHkey2YUyWOGCrSrm0SCtAnmdqm6VNFgnKq9fmudSf0A5gzHqM0Rw8l6WubRj/Lu0cxqzHhzQHz2WpscX5TbbtWXvSUYWV2pjGUz2vzmupVQ9vjKnDGK2Bc1fqIIyHAXtq5zCmH2O0Bu6z1CKyREReXd8nrZC9vJcc/jIyLWfPIIw30xi4ra8/dM4NAxCRM4HngT+QnC8cCWzd9HTrtpfSuMYMRIHkvPo6jYHr8Unn3AXOuSXOuVedcxcChzYzWB/2VhrXmIHaV2PQekv9mogcKSJFESmIyJGA1psoVmqTF4HGoPWW+giS3QherH0+V/teqoIw3hDYJe1xjRmkQGPQPs+p13LOVdA73O5pa+xVS5MfO2gMWtdMLSIjROR2EXmk9vUoEfluc6Otk9bFOWMGY+va8tWpqvfw+xLg28AqAOfcQ+hsN2KlNnkiwPZpD1pvqTdyzt3b63urGx2mDlZqkzepH4LXW+pFIrIzyQvgiMh/k9y3Tts7FMY0ZiiCtAes60IZcDxwMTBSRJ4F5qCzSIHN1CZvUp+p6y31XOfcR0RkY6DgnFvSzFB9sFKbvMns4fccEbkYeD+wtIl5+mOlNnmT2VKPBG4jOQyfIyK/EpEPNi/WelmpTd4MS3vAukrtnFvmnLvGOfcZ4D3ApsDEpibrJQjjdmCLNMc0pgFS3xKq7lcYReRDInIBMB3YgOSx0TS1Y0+TmfxJvdR1XSgTkQpwP3ANcIpzTuNljtcVxjRmqDI7U49yzn3aOXelUqGplEvdwBqNsY0ZgmzN1CJyqnPux8BZIvKWrTyccyc2Ldm6rSQ59DcNdGn7TyYcXHhglHYOH61BlsDLqY7Z3+H3Y7X//Vezg9TJSt1Qzl3bEU3aq/DkGO0kviqQ/jMd/S1ndEPtHx92zs1IIU9/VmoH8EWR7tU3d4T3jCg8a8stN1d32gPWe059rog8JiJnisgeTU3UNyt1A3Sw6vW7Ok+aMaLw7P7aWVpA6hd4671PfRBwELAQuEhEHlZ6n9pKPUQbs3zp3Z1jH91GXtpHO0uLWJz2gHXfp3bOveCc+wXwVeAB4IxmheqDlXoIulj6yrTOsXO3kCXv0c7SQl5Ke8B6Vz55p4hEIvIw8EtgKrBtU5Otm5V6kN7O4gXTOscuHCbLd9fO0mJS36e63re0xgNXAR91zj3XxDz90XyZJLe2lxfn39ZxcneHdO+qnaUFZW+mFpEiMMc593PlQgPMVh4/d0bKM0/f0fHNYod0qyyCZzJYaudcN7CdiKS+gNo6PKkdIE/2llmP3dTx7a42WWNvt+lJvdT1Hn7PAaaIyPX0WMTfOXdeU1Kt3xMpj5dbYwoPPPTb9h/vIEKXdpYWNyftAest9ezap4DC+6E92Exdh0MLU/51fvuvdxdhQ+0sJv2JqN7F/L/f7CB1spm6H8cUb7k7art8b5H0XyQwb7EMmJ/2oOLcW97TeOu/JHIntZVEe3LOHdyMUH0JwvhFYKu0x82Dk9r+Mmlc8a/7iVDUzmIAeJCoOjrtQes9/D65xz9vAHwWnXW/ITkEt1L3cmbb+IlHFW87UMQWksiQWRqD1nv4Pb3Xt6aISO/F/dPyBGDPLPdwQfv5Ez9evPdD2jnMW6icLta78snmPb4skGwnq3VV1S6WvcG5K9t/eNcHio9ZobPpEY1B6z38ns6b59SrgQpwXDMC1UHlkCZrCqzpvqHjtLt3L8y1QmfXVI1B+1v55H3APOfcjrWvjyE5n64AjzY93brdpzRuZrSzeuVtHSfP2KGwQGOZZlOf+UTVeRoD9/dE2UXUXqIQkQOBs4HfA1WSbXhSVymX5gFPa4ydBRvy+rIpnSc+tENhwfu1s5g+TdEauL/D76Jzbu37oJ8HLnbOXQtcKyIPNDVZ3+4EdlIcX8UwXqtO7hw3t0uW7a2dxfRL5dAb+p+piyKytvgfBu7o8Wf1no83wwTFsVVsQXXRPZ1jn++SZbZAYD6olbq/Yl4JTBSRRcByYBKAiOxCcgiuZYLi2KnbhoXP39H5zRWdsnqkdhZTl6UkC4mo6PeJMhF5P8keVv9Yu+a3iIwANtFcjDAI45nAu7TGT8uuMr9yc0fY1iZrNBalMIPzF6Lq57QG7/cQ2jk3bR3fy8Iz2DGel3qUzH7ybx1nvK0obkvtLGZArtccvO41yjLoRu0AzbR/4ZFH/t5x+pZW6NxZTTLhqMlzqaeS9tYHKTmkcM+MK9p/tGNBeJt2FjNgk4mqqa8g2lNuS10pl1YDt2rnaLTDinfcc2H7z3cXYWPtLGZQrtMOkNtS11ytHaCRvlq8fsrZbZfuJUKndhYzaOql1rzX3Ag3kLyEnvsrw99pu+KurxRvOsBency1yUTV1Jcv6i3XM3Vte9tLtHMM1XntF0z837ab7F3o/MvE38Vcl7rmUvQWbBiy37afM+Ezxcn2plX+VYE/a4cAD0pdKZeeIwPnMQMlrFnzt47T7zqo+OAY7SymIf5EVF2uHQI8KHXNb7QDDESR7tX/7Dh12nsKs20bWX9k4tAb/Cn17eRkRZROVq6Y1Dluxi6F5/bTzmIaZjpR9X7tEGt5UepKueTIwWy9McuX3N15wuPvkMW2jaxffqodoCcvSl3zO2CFdoj12YxXF9/Tefy8zWXJaO0spqGeBK7RDtGTN6WulEuLyejDKMNZ/OLdnScs3kRWeP0CSos6h6i6RjtET96UuuZHwCrtED0F8vy8SZ3jXt9AVu2incU03Dzgcu0QvXlV6kq59ARwoXaOtd4lldm3d5zc3i7d22tnMU3xU6JqpiYR8KzUNT8AXtEOsY889uiNHadtVhQ3XDuLaYoXyNBtrJ68K3WlXHoJ+KFmhoMLMx68uuPMbQviNu//3zY5dVpWHjbpzbtS1/ySZOvd1H26MOm+y9p/OkKETTXGN6mYTnK3JZO8LHWlXFoJhGmPe2zx5qnntV842vaF9t5JWbvi3VNdW9nmVRDGk0lpM72T266edHzxuv1F/PxFad5wNVH1MO0QffH9L+A3WMe+2o12dtslE8e2XXeAFdp7y4FTtUP0x+u/hJVy6V7gqmaOcVH7uRMPb7vTXp1sDWcRVZ/RDtEfr0tdczKwqPE/1rmrO34w8aPF6Vbo1jADOEc7RD28L3XtfesvNvJnFljTfUtHOGXfwuNW6NawCjiWqJqLxTi8LzVApVyKgfMb8bM6WPX6hI6v3zeyMM+2kW0d3yeqPqgdol4tUeqab5EcQg3aRqx4bWrnCTO3Lyy0bWRbx1SgrB1iILy+pdVbEMa7khR7k4H+t5uytDq586RnNpVlezY+mcmoV4H3ElVVHmQarFaaqamUS08CXxvof7cVLy+c1jn2BSt0S3HA0XkrNLRYqQEq5dIVDOB1ue1kwbOTO8e9tpGs3K2JsUz2nEVUzd2CltCCpa45Huh3584RMm/OnR3fkA5ZHTQ/ksmQGPiedojBaslSV8qlpcBhJE8IrdNoeWrWLR3hJm2y5h3pJTMZ8BRwVJaf7e5PS5YaoFIu3U9S7O7ef3ZA4aGH/9ZxxvCCbSPbapYCnyKqvqIdZChattQAlXLpenpdOCsVpk2/vL28kwhdSrGMjteBQ4mqM7WDDFVLlxqgUi5dAkQARxX/Oe1X7b/Y07aRbTndwOFE1Tu0gzRCS92n7ssPTjv++6e3XXGaCEXtLCZ1xxFVx2uHaBQr9VpRl5CsZnG0chKTrlOIqplajH+oWv7w+w1R1QHHkrGF2U1TnelbocFK/e+iajdwJPB77Sim6U4lqp6hHaIZrNS9Ja/XfYmM7Y9kGmYN8BWi6k+0gzSLnVP3Jeo6lZy8GG/qshI4kqj6F+0gzWSl7k/UdSxwMdhV8ZxbBnyGqHqrdpBms1LXI+r6BPBHsLW8c6pC8qRYbhY6GAo7p65HVL0ReB/wqHYUM2C3AXu3SqHBSl2/qPoEsC/wZ+0opm7nAocQVV/SDpImO/wejKjrFOBs7Dw7q5YDXyaq/kk7iAYr9WBFXWNI7mfbNrXZch/JiiWPawfRYoffgxVVJwB7ApcpJzGJVSQLG+zXyoUGm6kbI+o6BLgU2EY7Sot6FPgCUXVIq8X6wmbqRoiqtwB7MIC1z0xDrAJ+AuxlhX6TzdSNFnUdBPwMeLd2FM/dSrKlbEsfaq+LlboZoq4CcBzwQ2Ar5TS+eQr4BlH1Bu0gWWWlbqaoa1PgNGAc0KmcJu+WAGcBPyOqrtQOk2VW6jREXQEQkmzUZ+UemJeBXwA/J6q+rB0mD6zUaYq6tga+Cfwfg9j6p8UsJLk28Wui6qvaYfLESq0h6tocOBE4AdhcOU3WzCMp80VE1WXaYfLISq0p6toQ+CzwZaCV97p2JFezLwTi2go0ZpCs1FkRde1CskbaMUCr7ApSIVns8XdE1bm6Ufxhpc6aqKsIfBT4NPAJYLhuoIZ7ErgO+Dswtbbgo2kgK3WWJcsW7wN8svbZQzfQoDiSlyySIkdVeye9yazUeZLcGjsIOAD4ILCrap51WwnMAKa88YmqC3QjtRYrdZ5FXf9BsiLLPsBokpLvDGyQUoJXgVm1z0xgKnAvUXXFUH+wiIwnOf1Y4JzL4xGKGiu1b5JHVLcjKfgIYBdgS5JbZz0/m7H+RR7WkDz0sRBY1Oszl6TEjxNVn2/W/w0ROZBkF8rLrdQDY6VuVcn5ejtJgd0bnwxduBKRALjRSj0wbdoBjJKkvPYMtYfsfWpjPGOlNsYzVmpjPGOlNpkkIlcCdwO7ich8ETlOO1Ne2NVvYzxjM7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+MZK7UxnrFSG+OZ/wcrCbsBYz+/+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dataset[\"Survived\"].value_counts().plot.pie()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.16" } }, "nbformat": 4, "nbformat_minor": 4 }